Direct selective laser sintering and melting of ceramics: a review

Direct selective laser sintering and melting of ceramics: a review PurposeThis paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser beam without the use of binders.Design/methodology/approachSelective laser sintering or melting (SLS/SLM) techniques are first introduced, followed by analysis of results from silica (SiO2), zirconia (ZrO2) and ceramic-reinforced metal matrix composites processed by direct laser sintering and melting.FindingsAt the current state of technology, it is still a challenge to fabricate dense ceramic components directly using SLS/SLM. Critical challenges encountered during direct laser melting of ceramic will be discussed, including deposition of ceramic powder layer, interaction between laser and powder particles, dynamic melting and consolidation mechanism of the process and the presence of residual stresses in ceramics processed via SLS/SLM.Originality/valueDespite the challenges, SLS/SLM still has the potential in fabrication of ceramics. Additional research is needed to understand and establish the optimal interaction between the laser beam and ceramic powder bed for full density part fabrication. Looking into the future, other melting-based techniques for ceramic and composites are presented, along with their potential applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rapid Prototyping Journal Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/direct-selective-laser-sintering-and-melting-of-ceramics-a-review-VENXCbAPB2
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1355-2546
DOI
10.1108/RPJ-11-2015-0178
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to provide a review on the process of additive manufacturing of ceramic materials, focusing on partial and full melting of ceramic powder by a high-energy laser beam without the use of binders.Design/methodology/approachSelective laser sintering or melting (SLS/SLM) techniques are first introduced, followed by analysis of results from silica (SiO2), zirconia (ZrO2) and ceramic-reinforced metal matrix composites processed by direct laser sintering and melting.FindingsAt the current state of technology, it is still a challenge to fabricate dense ceramic components directly using SLS/SLM. Critical challenges encountered during direct laser melting of ceramic will be discussed, including deposition of ceramic powder layer, interaction between laser and powder particles, dynamic melting and consolidation mechanism of the process and the presence of residual stresses in ceramics processed via SLS/SLM.Originality/valueDespite the challenges, SLS/SLM still has the potential in fabrication of ceramics. Additional research is needed to understand and establish the optimal interaction between the laser beam and ceramic powder bed for full density part fabrication. Looking into the future, other melting-based techniques for ceramic and composites are presented, along with their potential applications.

Journal

Rapid Prototyping JournalEmerald Publishing

Published: Apr 18, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off