Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Diploidy in evolutionary algorithms for dynamic optimization problems

Diploidy in evolutionary algorithms for dynamic optimization problems Purpose – In this work, the authors show the performance of the proposed diploid scheme (a representation where each individual contains two genotypes) with respect to two dynamic optimization problems, while addressing drawbacks the authors have identified in previous works which compare diploid evolutionary algorithms (EAs) to standard EAs. The paper aims to discuss this issue. Design/methodology/approach – In the proposed diploid representation of EA, each individual possesses two copies of the genotype. In order to convert this pair of genotypes to a single phenotype, each genotype is individually evaluated in relation to the fitness function and the best genotype is presented as the phenotype. In order to provide a fair and objective comparison, the authors make sure to compare populations which contain the same amount of genetic information, where the only difference is the arrangement and interpretation of the information. The two representations are compared using two shifting fitness functions which change at regular intervals to displace the global optimum to a new position. Findings – For small fitness landscapes the haploid (standard) and diploid algorithms perform comparably and are able to find the global optimum very quickly. However, as the search space increases, rediscovering the global optimum becomes more difficult and the diploid algorithm outperforms the haploid algorithm with respect to how fast it relocates the new optimum. Since both algorithms use the same amount of genetic information, it is only fair to conclude it is the unique arrangement of the diploid algorithm that allows it to explore the search space better. Originality/value – The diploid representation presented here is novel in that instead of adopting a dominance scheme for each allele (value) in the vector of values that is the genotype, dominance is adopted across the entire genotype in relation to its homologue. As a result, this representation can be extended across any alphabet, for any optimization function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

Diploidy in evolutionary algorithms for dynamic optimization problems

Loading next page...
 
/lp/emerald-publishing/diploidy-in-evolutionary-algorithms-for-dynamic-optimization-problems-bCnJoYDF31
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1756-378X
DOI
10.1108/IJICC-07-2015-0026
Publisher site
See Article on Publisher Site

Abstract

Purpose – In this work, the authors show the performance of the proposed diploid scheme (a representation where each individual contains two genotypes) with respect to two dynamic optimization problems, while addressing drawbacks the authors have identified in previous works which compare diploid evolutionary algorithms (EAs) to standard EAs. The paper aims to discuss this issue. Design/methodology/approach – In the proposed diploid representation of EA, each individual possesses two copies of the genotype. In order to convert this pair of genotypes to a single phenotype, each genotype is individually evaluated in relation to the fitness function and the best genotype is presented as the phenotype. In order to provide a fair and objective comparison, the authors make sure to compare populations which contain the same amount of genetic information, where the only difference is the arrangement and interpretation of the information. The two representations are compared using two shifting fitness functions which change at regular intervals to displace the global optimum to a new position. Findings – For small fitness landscapes the haploid (standard) and diploid algorithms perform comparably and are able to find the global optimum very quickly. However, as the search space increases, rediscovering the global optimum becomes more difficult and the diploid algorithm outperforms the haploid algorithm with respect to how fast it relocates the new optimum. Since both algorithms use the same amount of genetic information, it is only fair to conclude it is the unique arrangement of the diploid algorithm that allows it to explore the search space better. Originality/value – The diploid representation presented here is novel in that instead of adopting a dominance scheme for each allele (value) in the vector of values that is the genotype, dominance is adopted across the entire genotype in relation to its homologue. As a result, this representation can be extended across any alphabet, for any optimization function.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Nov 9, 2015

There are no references for this article.