Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study is to measure the mass diffusion coefficient of nitrogen in jet fuel using digital holography interferometry for cost-effective designing and modeling of the aircraft tank inerting system.Design/methodology/approachThe mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels were measured by digital holography interferometry at temperatures ranging from 278.15 to 343.15 K. The Arrhenius equation is used to adequately describe the relationship between mass diffusion coefficients and temperature. The viscosities of RP-3 and RP-5 jet fuels were also measured to examine the accuracy of the Stokes–Einstein model in calculating mass diffusion coefficients.FindingsAs temperature increases from 278.15 to 343.15 K, the mass diffusion coefficients increase 4.23-fold for N2 in RP-3 jet fuel and 5.13-fold for N2 in RP-5 jet fuel. The value of Dµ/T is not constant as the Stokes–Einstein equation expressed, but is a weak linear function of temperature.Practical implicationsA more accurate diffusion model is proposed by fitting the measured Dµ/T with the temperature and calculating the mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels within 10 per cent relative deviation.Originality/valueA measurement system for mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels was constructed based on the digital holography interferometry. The mass diffusion coefficient can be expressed by a uniform polynomial function of temperature and viscosity.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Aug 21, 2019
Keywords: Mass diffusion coefficient; N2; RP-3 jet fuel; RP-5 jet fuel; Digital holography interferometry
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.