Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to report on the simulation of an on‐load tap‐changer (OLTC) in a power transformer. During design and test of the electrical insulation the influence of the environment on the OLTC is normally neglected. The authors investigate how large these influences are. Design/methodology/approach – The environment of the OLTC is taken into account by modeling tap leads in detail as well as transformer windings. The electric fields are computed and resulting breakdown voltages are estimated by using the streamer criterion. The results are compared to the ones of an OLTC without transformer and leads. Findings – For the investigated typical example the influence of the transformer and the tap leads on the internal OLTC insulation is small enough to neglect them during design optimization and test procedures. Originality/value – New is the execution of a finite element simulation and breakdown evaluation of such a complex geometric structure as the complete system consisting of OLTC combined with tap leads and windings. Furthermore, standard design and test procedures used by OLTC manufacturers are justified.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Jul 1, 2014
Keywords: 3D FEM; Transformers; Field computation; Adaptive meshing; Power transformers; Stress analysis
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.