Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Developments of an efficient global optimal design technique – a combined approach of MLS and SA algorithm

Developments of an efficient global optimal design technique – a combined approach of MLS and SA... A new response surface model (RSM), the moving least squares (MLS) approximation, is proposed for reconstructing the objective/constraint functions for the design optimization of electromagnetic devices. The reconstructed functions are then combined with the simulated annealing (SA) algorithm to develop a computationally efficient technique to obtain the global solutions. The new method has: the “intelligence” to arrange the sample points, i.e. intensify the sample points in regions where a local optimum is likely to exist; the flexibility in dealing with irregular sample points; the self‐adaptive ability to regulate the parameters of the MLS models. Detailed numerical examples are given to validate the proposed technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Developments of an efficient global optimal design technique – a combined approach of MLS and SA algorithm

Loading next page...
 
/lp/emerald-publishing/developments-of-an-efficient-global-optimal-design-technique-a-qwvXZ2ry0k
Publisher
Emerald Publishing
Copyright
Copyright © 2002 MCB UP Ltd. All rights reserved.
ISSN
0332-1649
DOI
10.1108/03321640210437851
Publisher site
See Article on Publisher Site

Abstract

A new response surface model (RSM), the moving least squares (MLS) approximation, is proposed for reconstructing the objective/constraint functions for the design optimization of electromagnetic devices. The reconstructed functions are then combined with the simulated annealing (SA) algorithm to develop a computationally efficient technique to obtain the global solutions. The new method has: the “intelligence” to arrange the sample points, i.e. intensify the sample points in regions where a local optimum is likely to exist; the flexibility in dealing with irregular sample points; the self‐adaptive ability to regulate the parameters of the MLS models. Detailed numerical examples are given to validate the proposed technique.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Dec 1, 2002

Keywords: Surfaces; Model; Simulation; Algorithms; Optimization

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month