Development of a user-friendly regression model to evaluate carbon emissions of office buildings design in the subtropics

Development of a user-friendly regression model to evaluate carbon emissions of office buildings... PurposeDesign teams have difficulties in assessing building carbon emissions at an early stage, as most building energy simulation tools require a detailed input of building design for estimation. The purpose of this paper is to develop a user-friendly regression model to estimate carbon emissions of the preliminary design of office buildings in the subtropics by way of example. Five sets of building design parameters, including building configuration, building envelope, design space conditions, building system configuration and occupant behaviour, are considered in this study.Design/methodology/approachBoth EnergyPlus and Monte Carlo simulation were used to predict carbon emissions for different combinations of the design parameters. A total of 100,000 simulations were conducted to ensure a full range of simulation results. Based on the simulation results, a regression model was developed to estimate carbon emissions of office buildings based on preliminary design information.FindingsThe results show that occupant density, annual mean occupancy rate, equipment load, lighting load and chiller coefficient of performance are the top five influential parameters affecting building carbon emissions under the subtropics. Besides, the design parameters of ten office buildings were input into this user-friendly regression model for validation. The results show that the ranking of its simulated carbon emissions for these ten buildings is consistent with the original carbon emissions ranking.Practical implicationsWith the use of this developed regression model, design teams can not only have a simple and quick estimation of carbon emissions based on the building design information at the conceptual stage but also explore design options by understanding the level of reduction in carbon emissions if a certain building design parameter is changed. The study also provides recommendations on building design to reduce carbon emissions of office buildings.Originality/valueLimited research has been conducted to date to investigate how the change of building design affects carbon emissions in the subtropics where four distinct seasons lead to significant variations of outdoor temperature and relative humidity. Previous research also did not emphasise on the impact of high-rise office building designs (e.g. small building footprint, high window-to-wall ratio) on carbon emissions. This paper adds value by identifying the influential parameters affecting carbon emissions for a high-rise office building design and allows a handy estimate of building carbon emissions under the subtropical conditions. The same approach may be used for other meteorological conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Facilities Emerald Publishing

Development of a user-friendly regression model to evaluate carbon emissions of office buildings design in the subtropics

Facilities, Volume 37 (11/12): 19 – Aug 5, 2019

Loading next page...
 
/lp/emerald-publishing/development-of-a-user-friendly-regression-model-to-evaluate-carbon-j01VyVN918
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0263-2772
DOI
10.1108/F-05-2017-0051
Publisher site
See Article on Publisher Site

Abstract

PurposeDesign teams have difficulties in assessing building carbon emissions at an early stage, as most building energy simulation tools require a detailed input of building design for estimation. The purpose of this paper is to develop a user-friendly regression model to estimate carbon emissions of the preliminary design of office buildings in the subtropics by way of example. Five sets of building design parameters, including building configuration, building envelope, design space conditions, building system configuration and occupant behaviour, are considered in this study.Design/methodology/approachBoth EnergyPlus and Monte Carlo simulation were used to predict carbon emissions for different combinations of the design parameters. A total of 100,000 simulations were conducted to ensure a full range of simulation results. Based on the simulation results, a regression model was developed to estimate carbon emissions of office buildings based on preliminary design information.FindingsThe results show that occupant density, annual mean occupancy rate, equipment load, lighting load and chiller coefficient of performance are the top five influential parameters affecting building carbon emissions under the subtropics. Besides, the design parameters of ten office buildings were input into this user-friendly regression model for validation. The results show that the ranking of its simulated carbon emissions for these ten buildings is consistent with the original carbon emissions ranking.Practical implicationsWith the use of this developed regression model, design teams can not only have a simple and quick estimation of carbon emissions based on the building design information at the conceptual stage but also explore design options by understanding the level of reduction in carbon emissions if a certain building design parameter is changed. The study also provides recommendations on building design to reduce carbon emissions of office buildings.Originality/valueLimited research has been conducted to date to investigate how the change of building design affects carbon emissions in the subtropics where four distinct seasons lead to significant variations of outdoor temperature and relative humidity. Previous research also did not emphasise on the impact of high-rise office building designs (e.g. small building footprint, high window-to-wall ratio) on carbon emissions. This paper adds value by identifying the influential parameters affecting carbon emissions for a high-rise office building design and allows a handy estimate of building carbon emissions under the subtropical conditions. The same approach may be used for other meteorological conditions.

Journal

FacilitiesEmerald Publishing

Published: Aug 5, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month