Detached eddy simulations for high speed axial flow fuel pumps with swept and straight blade impellers

Detached eddy simulations for high speed axial flow fuel pumps with swept and straight blade... PurposeHigh speed axial flow pumps are widely used in aircraft fuel systems. Conventional axial flow pumps often generate radial secondary flows at partial-load conditions which influence the flow structure and form a “saddle-shaped” region in the Q-H curve that can destabilize the operation. Thus, the “saddle-shaped” Q-H region must be eliminated. The paper aims to discuss these issues.Design/methodology/approachThe swept stacking method is often used for radial flow control in turbo-machinery impeller blade design. Hence, this study uses the swept stacking method to design a high speed axial flow pump. The detached eddy simulation method and experiments are used to compare the performance of a swept blade impeller in a high speed axial fuel pump with the original straight blade impeller. Both the pump performance and internal flow characteristics are studied.FindingsThe results show separation vortices in the impeller with the straight blade design at partial-load conditions that are driven by the rotating centrifugal force to gather near the shroud. The swept geometry provides an extra force which is opposite to the rotating centrifugal force that creates a new radial equilibrium which turns the flow back towards the middle of the blade which eliminates the vortices and the “saddle-shaped” Q-H region. The swept blade impeller also improves the critical cavitation performance. Analysis of the pressure pulsations shows that the swept blade design does not affect the stability.Originality/valueThis study is the initial application of swept blades for axial flow liquid pumps. The results show how the swept stacking changes the radial equilibrium of the high density, high viscosity flow and the effects on the mass transfer and pressure pulsations. The swept blade effectively improves the operating stability of high speed fuel pumps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Detached eddy simulations for high speed axial flow fuel pumps with swept and straight blade impellers

Engineering Computations, Volume 33 (8): 16 – Nov 7, 2016

Loading next page...
 
/lp/emerald-publishing/detached-eddy-simulations-for-high-speed-axial-flow-fuel-pumps-with-pgAubXM9GW
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
DOI
10.1108/EC-06-2015-0165
Publisher site
See Article on Publisher Site

Abstract

PurposeHigh speed axial flow pumps are widely used in aircraft fuel systems. Conventional axial flow pumps often generate radial secondary flows at partial-load conditions which influence the flow structure and form a “saddle-shaped” region in the Q-H curve that can destabilize the operation. Thus, the “saddle-shaped” Q-H region must be eliminated. The paper aims to discuss these issues.Design/methodology/approachThe swept stacking method is often used for radial flow control in turbo-machinery impeller blade design. Hence, this study uses the swept stacking method to design a high speed axial flow pump. The detached eddy simulation method and experiments are used to compare the performance of a swept blade impeller in a high speed axial fuel pump with the original straight blade impeller. Both the pump performance and internal flow characteristics are studied.FindingsThe results show separation vortices in the impeller with the straight blade design at partial-load conditions that are driven by the rotating centrifugal force to gather near the shroud. The swept geometry provides an extra force which is opposite to the rotating centrifugal force that creates a new radial equilibrium which turns the flow back towards the middle of the blade which eliminates the vortices and the “saddle-shaped” Q-H region. The swept blade impeller also improves the critical cavitation performance. Analysis of the pressure pulsations shows that the swept blade design does not affect the stability.Originality/valueThis study is the initial application of swept blades for axial flow liquid pumps. The results show how the swept stacking changes the radial equilibrium of the high density, high viscosity flow and the effects on the mass transfer and pressure pulsations. The swept blade effectively improves the operating stability of high speed fuel pumps.

Journal

Engineering ComputationsEmerald Publishing

Published: Nov 7, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off