Design of a stability augmentation system for a helicopter using LQR control and ADS‐33 handling qualities specifications

Design of a stability augmentation system for a helicopter using LQR control and ADS‐33... Purpose – This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter. Design/methodology/approach – The feedback controller is designed using linear quadratic regulator (LQR) control with full state feedback and LQR with output feedback approaches. SAS is designed to meet the handling qualities specification known as Aeronautical Design Standard (ADS‐33E‐PRF). A helicopter having a soft inplane four‐bladed hingeless main rotor and a four‐bladed tail rotor with conventional mechanical controls is used for the simulation studies. In the simulation studies, the helicopter is trimmed at hover, low speeds and forward speeds flight conditions. The performance of the helicopter SAS schemes are assessed with respect to the requirements of ADS‐33E‐PRF. Findings – The SAS in the longitudinal axis meets the requirement of the Level 1 handling quality specifications in hover and low speed as well as for forward speed flight conditions. The SAS in the lateral axis meets the requirement of the Level 2 handling quality specifications in both hover and low speed as well as for forward speed flight conditions. The requirements of the inter axis coupling is also met and shown for the coupled dynamics case. The SAS in lateral axis may require an additional control augmentation system or adaptive control to meet the Level 1 requirements. Originality/value – The study shows that the design of a SAS using LQR control algorithm with full state and output feedbacks can be used to meet ADS‐33 handling quality specifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Design of a stability augmentation system for a helicopter using LQR control and ADS‐33 handling qualities specifications

Loading next page...
 
/lp/emerald-publishing/design-of-a-stability-augmentation-system-for-a-helicopter-using-lqr-kdCeBwVEgq
Publisher
Emerald Publishing
Copyright
Copyright © 2008 Emerald Group Publishing Limited. All rights reserved.
ISSN
0002-2667
DOI
10.1108/00022660810859337
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter. Design/methodology/approach – The feedback controller is designed using linear quadratic regulator (LQR) control with full state feedback and LQR with output feedback approaches. SAS is designed to meet the handling qualities specification known as Aeronautical Design Standard (ADS‐33E‐PRF). A helicopter having a soft inplane four‐bladed hingeless main rotor and a four‐bladed tail rotor with conventional mechanical controls is used for the simulation studies. In the simulation studies, the helicopter is trimmed at hover, low speeds and forward speeds flight conditions. The performance of the helicopter SAS schemes are assessed with respect to the requirements of ADS‐33E‐PRF. Findings – The SAS in the longitudinal axis meets the requirement of the Level 1 handling quality specifications in hover and low speed as well as for forward speed flight conditions. The SAS in the lateral axis meets the requirement of the Level 2 handling quality specifications in both hover and low speed as well as for forward speed flight conditions. The requirements of the inter axis coupling is also met and shown for the coupled dynamics case. The SAS in lateral axis may require an additional control augmentation system or adaptive control to meet the Level 1 requirements. Originality/value – The study shows that the design of a SAS using LQR control algorithm with full state and output feedbacks can be used to meet ADS‐33 handling quality specifications.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Mar 21, 2008

Keywords: Helicopters; Flight dynamics; Control systems

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off