Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to develop a model of the inductive link for implantable systems. The model is suitable for a cochlear implant in which a lateral misalignment and distance coil can be up to 16 mm. Design/methodology/approach – The description of the generation of implantable systems' high‐power, such as a cochlear implant, are powered by transcutaneous inductive power links formed by two coils: the first is a printed spiral coil used in the receiver device and the second is a solenoid coil used in the emitter device. Optimizing the power efficiency of the wireless link is imperative to minimize the size of the external energy source, heating dissipation in the tissue, and interference with other devices. The authors have outlined the theoretical foundation of optimal power transmission efficiency in an inductive link, and combined it with semi‐empirical models to predict parasitic components. The power amplifier itself is a class‐E amplifier optimized in both output voltage and efficiency, and bears an excellent tolerance to misalignments. Findings – Two Spice‐based electrical models of the coils are achieved. The technique employed during the work is based on polynomial interpolation of the mutual inductance in which coil misalignments are considered as variables. On the other hand, a voltage regulator is studied and simulated by Cadence Analog Artist in the AMS 0.35 μ m CMOS technology. Originality/value – This paper provides a novel and useful method for transmitting power for an implantable system via an inductive link. The procedure of the authors' design is achieved at 10 MHz and the power transmission efficiency is 35 percent, whatever the longitudinal misalignment (up to 16 mm) between both coils.
Microelectronics International – Emerald Publishing
Published: Jan 20, 2012
Keywords: Microelectronics; Packaging; Power transmission systems; Integrated circuits; Amplifiers; Micro‐circuit technology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.