Design and development of impact‐resistant sensor node for launch deployment into closed area

Design and development of impact‐resistant sensor node for launch deployment into closed area Purpose – The purpose of this paper is to propose a novel wireless sensor node (SN), with impact resistant capability, for launch deployment into closed areas. In disaster areas, gathering disaster area information is crucially important to prevent secondary disasters. However, gathering information is usually associated with the risk of death and/or accident for rescue workers in closed areas. The authors propose the SN for gathering information in dangerous places, inaccessible to rescue workers and robots, by utilizing launch deployment. Design/methodology/approach – Buffer material is essential when designing an impact‐resistant structure. The authors adopted the air cushion as general buffer material when considering the directional characteristics of sensor mounting and wireless communication quality and developed the expression for determining the thickness of the air cushion using the parameters of SN size, mass, air pressure and acceleration. The authors developed a sensor node with impact resistant structure by utilizing the proposed determination method of air cushion thickness. Findings – In the evaluation of impact resistant structure in free fall, launch deployment, the authors verified that the impact resistant structure protected the SN, and the performance of configured devices on the SN. Then, the authors examined the effect of the impact‐resistant structure on wireless communication between SNs. The structure had no effect on electric field intensity, throughput, or packet jitter, which confirmed that the wireless communication capacity was unaffected by the structure. Originality/value – In this paper, a new design method is stated for a sensor node with an impact‐resistant structure by utilizing an air cushion as a general buffer material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sensor Review Emerald Publishing

Design and development of impact‐resistant sensor node for launch deployment into closed area

Loading next page...
 
/lp/emerald-publishing/design-and-development-of-impact-resistant-sensor-node-for-launch-k2VR9WF8M8
Publisher
Emerald Publishing
Copyright
Copyright © 2012 Emerald Group Publishing Limited. All rights reserved.
ISSN
0260-2288
DOI
10.1108/02602281211257551
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to propose a novel wireless sensor node (SN), with impact resistant capability, for launch deployment into closed areas. In disaster areas, gathering disaster area information is crucially important to prevent secondary disasters. However, gathering information is usually associated with the risk of death and/or accident for rescue workers in closed areas. The authors propose the SN for gathering information in dangerous places, inaccessible to rescue workers and robots, by utilizing launch deployment. Design/methodology/approach – Buffer material is essential when designing an impact‐resistant structure. The authors adopted the air cushion as general buffer material when considering the directional characteristics of sensor mounting and wireless communication quality and developed the expression for determining the thickness of the air cushion using the parameters of SN size, mass, air pressure and acceleration. The authors developed a sensor node with impact resistant structure by utilizing the proposed determination method of air cushion thickness. Findings – In the evaluation of impact resistant structure in free fall, launch deployment, the authors verified that the impact resistant structure protected the SN, and the performance of configured devices on the SN. Then, the authors examined the effect of the impact‐resistant structure on wireless communication between SNs. The structure had no effect on electric field intensity, throughput, or packet jitter, which confirmed that the wireless communication capacity was unaffected by the structure. Originality/value – In this paper, a new design method is stated for a sensor node with an impact‐resistant structure by utilizing an air cushion as a general buffer material.

Journal

Sensor ReviewEmerald Publishing

Published: Sep 7, 2012

Keywords: Sensor node; Impact resistant structure; Wireless sensor networks; Air cushion; Disasters; Search and rescue

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off