Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – This paper seeks to develop 3D finite element methods for the electromagnetic field calculation in electrical machines and to present the discrete methods of winding description. Design/methodology/approach – The 3D finite element models of electrical machine windings are considered. Attention is paid to the windings with stranded conductors. The finite element equations are considered as the equations of magnetic networks. The formulation of matrix that transforms winding currents into the field sources is discussed. This matrix is also used in the calculations of flux linkages. In the proposed method, the winding loops are replaced by a set of plane loops. The field sources are defined by the numbers of these loops around the element edges and loops associated with element facets. Findings – The presented description is the 3D finite element representation of MMF description used in the classical models of electrical machines. The advantage of the proposed approach is that the source description can be successfully applied in the FE method using single scalar potential. In addition, the presented approach guarantees a good convergence of ICCG procedure of solving edge element equations for ungauged formulation using magnetic vector potential. Originality/value – The applied analogies between the finite element formulation and the equivalent magnetic network models help to formulate an efficient method of field source description. The developed method allows one to apply single magnetic scalar potential in the 3D finite element analysis of electrical machines.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Jul 11, 2008
Keywords: Electric machines; Finite element analysis; Magnetic fields; Modelling
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.