Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dependence of contact area on the resolution of fractal interfaces in elastic and inelastic problems

Dependence of contact area on the resolution of fractal interfaces in elastic and inelastic problems Purpose – The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface. Design/methodology/approach – A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s , a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ . At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved. Findings – The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution. Originality/value – The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations: International Journal for Computer-Aided Engineering and Software Emerald Publishing

Dependence of contact area on the resolution of fractal interfaces in elastic and inelastic problems

Loading next page...
 
/lp/emerald-publishing/dependence-of-contact-area-on-the-resolution-of-fractal-interfaces-in-roK451cclJ

References (22)

Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
0264-4401
DOI
10.1108/02644401111154646
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface. Design/methodology/approach – A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s , a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ . At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved. Findings – The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution. Originality/value – The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers.

Journal

Engineering Computations: International Journal for Computer-Aided Engineering and SoftwareEmerald Publishing

Published: Aug 23, 2011

Keywords: Rough interfaces; Fractal geometry; Fractal interpolation functions; Unilateral contact; Fractal resolution; Topography; Stress (materials)

There are no references for this article.