Degree of chitosan deacetylation on thermophysiological comfort properties of nylon 6,6 fabrics

Degree of chitosan deacetylation on thermophysiological comfort properties of nylon 6,6 fabrics PurposeThe purpose of this paper is to analyze the effects of treatments using chitosan in different degree of deacetylations (DDs) on thermophysiological comfort properties of nylon 6,6/elastane pressure garments using a large skin model hot plate instrumentation to prevent infection and excess sweating during burn scar management for future designs.Design/methodology/approachChitosans in different DD (DD 70, DD 81 and nylon 6,6/elastane fabrics in different structures, then the total DD 90) are treated with thermal resistance (Rct) ((°ΔC)(m2)/W), total heat loss (Qt or THL) (W/m2), apparent total evaporative resistance (RetA), ((ΔkPa)(m2)/W), apparent intrinsic evaporative resistance (RefA), ((ΔkPa)(m2)/W) and total insulation values (It) (clo) were analyzed using the large skin model hot plate instrumentation in comparison with untreated control samples. Antimicrobial activities, washing tests and moisture regain properties were also evaluated.FindingsIt is found that chitosan DDs have a significant effect on thermophysiological comfort properties of nylon 6,6 fabrics. A small but statistically significant decrease was observed in thermal resistance (Rct) (Tog) and isolation (It) (clo) properties for higher chitosan DDs and for higher chitosan concentrations for all fabric samples after each treatment. Antimicrobial activity showed a small but statistically significant decrease for all samples with the increase of DD and fabrics treated with lower DD 70 of chitosan showed better antimicrobial activity for all samples. Additionally, fabrics treated with higher DD’s exhibited higher moisture regain.Originality/valueTreatments with chitosan in different DD and in different concentrations impact the heat and moisture transfer properties of nylon 6,6 fabrics significantly. It is a reference to evaluate the thermophysiological comfort properties of pressure garments for future designs using dry and sweating skin tests while imparting antimicrobial activity with chitosans in different DDs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Clothing Science and Technology Emerald Publishing

Degree of chitosan deacetylation on thermophysiological comfort properties of nylon 6,6 fabrics

Loading next page...
 
/lp/emerald-publishing/degree-of-chitosan-deacetylation-on-thermophysiological-comfort-4l9XWR5Nqy
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0955-6222
DOI
10.1108/IJCST-03-2018-0028
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to analyze the effects of treatments using chitosan in different degree of deacetylations (DDs) on thermophysiological comfort properties of nylon 6,6/elastane pressure garments using a large skin model hot plate instrumentation to prevent infection and excess sweating during burn scar management for future designs.Design/methodology/approachChitosans in different DD (DD 70, DD 81 and nylon 6,6/elastane fabrics in different structures, then the total DD 90) are treated with thermal resistance (Rct) ((°ΔC)(m2)/W), total heat loss (Qt or THL) (W/m2), apparent total evaporative resistance (RetA), ((ΔkPa)(m2)/W), apparent intrinsic evaporative resistance (RefA), ((ΔkPa)(m2)/W) and total insulation values (It) (clo) were analyzed using the large skin model hot plate instrumentation in comparison with untreated control samples. Antimicrobial activities, washing tests and moisture regain properties were also evaluated.FindingsIt is found that chitosan DDs have a significant effect on thermophysiological comfort properties of nylon 6,6 fabrics. A small but statistically significant decrease was observed in thermal resistance (Rct) (Tog) and isolation (It) (clo) properties for higher chitosan DDs and for higher chitosan concentrations for all fabric samples after each treatment. Antimicrobial activity showed a small but statistically significant decrease for all samples with the increase of DD and fabrics treated with lower DD 70 of chitosan showed better antimicrobial activity for all samples. Additionally, fabrics treated with higher DD’s exhibited higher moisture regain.Originality/valueTreatments with chitosan in different DD and in different concentrations impact the heat and moisture transfer properties of nylon 6,6 fabrics significantly. It is a reference to evaluate the thermophysiological comfort properties of pressure garments for future designs using dry and sweating skin tests while imparting antimicrobial activity with chitosans in different DDs.

Journal

International Journal of Clothing Science and TechnologyEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off