Defining the three Rs of commercial property market performance

Defining the three Rs of commercial property market performance Purpose – Modern property investment allocation techniques are typically based on recognised measures of return and risk. Whilst these models work well in theory under stable conditions, they can fail when stable assumptions cease to hold and extreme volatility occurs. This is evident in commercial property markets which can experience extended stable periods followed by large concentrated negative price fluctuations as a result of major unpredictable events. This extreme volatility may not be fully reflected in traditional risk calculations and can lead to ruin. The paper aims to discuss these issues. Design/methodology/approach – This research studies 28 years of quarterly Australian direct commercial property market performance data for normal distribution features and signs of extreme downside risk. For the extreme values, Power Law distribution models were examined as to provide a better probability measure of large negative price fluctuations. Findings – The results show that the normal bell curve distribution underestimated actual extreme values both by frequency and extent, being by at least 30 per cent for the outermost data point. For the statistical outliers beyond 2 SD, a Power Law distribution can overcome many of the shortcomings of the standard deviation approach and therefore better measure the probability of ruin, being extreme downside risk. Practical implications – In highlighting the challenges to measuring property market performance, analysis of extreme downside risk should be separated from traditional standard deviation risk calculations. In recognising these two different types of risk, extreme downside risk has a magnified domino effect with the tendency of bad news to come in crowds. Big price changes can lead to market crashes and financial ruin which is well beyond the standard deviation risk measure. This needs to be recognised and developed as there is evidence that extreme downside risk determinants are increasing by magnitude, frequency and impact. Originality/value – Analysis of extreme downside risk should form a key part of the property decision process and be included in the property investment manager’s toolkit. Modelling techniques for estimating measures of tail risk provide challenges and have shown to be beyond traditional risk management practices, being too narrow and constraining a definition. Measuring extreme risk and the likelihood of ruin is the first step in analysing and dealing with risk in both an asset class and portfolio context. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Property Investment & Finance Emerald Publishing

Defining the three Rs of commercial property market performance

Journal of Property Investment & Finance, Volume 33 (6): 13 – Sep 7, 2015

Loading next page...
 
/lp/emerald-publishing/defining-the-three-rs-of-commercial-property-market-performance-lFCX7GwLl4
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1463-578X
DOI
10.1108/JPIF-08-2014-0054
Publisher site
See Article on Publisher Site

Abstract

Purpose – Modern property investment allocation techniques are typically based on recognised measures of return and risk. Whilst these models work well in theory under stable conditions, they can fail when stable assumptions cease to hold and extreme volatility occurs. This is evident in commercial property markets which can experience extended stable periods followed by large concentrated negative price fluctuations as a result of major unpredictable events. This extreme volatility may not be fully reflected in traditional risk calculations and can lead to ruin. The paper aims to discuss these issues. Design/methodology/approach – This research studies 28 years of quarterly Australian direct commercial property market performance data for normal distribution features and signs of extreme downside risk. For the extreme values, Power Law distribution models were examined as to provide a better probability measure of large negative price fluctuations. Findings – The results show that the normal bell curve distribution underestimated actual extreme values both by frequency and extent, being by at least 30 per cent for the outermost data point. For the statistical outliers beyond 2 SD, a Power Law distribution can overcome many of the shortcomings of the standard deviation approach and therefore better measure the probability of ruin, being extreme downside risk. Practical implications – In highlighting the challenges to measuring property market performance, analysis of extreme downside risk should be separated from traditional standard deviation risk calculations. In recognising these two different types of risk, extreme downside risk has a magnified domino effect with the tendency of bad news to come in crowds. Big price changes can lead to market crashes and financial ruin which is well beyond the standard deviation risk measure. This needs to be recognised and developed as there is evidence that extreme downside risk determinants are increasing by magnitude, frequency and impact. Originality/value – Analysis of extreme downside risk should form a key part of the property decision process and be included in the property investment manager’s toolkit. Modelling techniques for estimating measures of tail risk provide challenges and have shown to be beyond traditional risk management practices, being too narrow and constraining a definition. Measuring extreme risk and the likelihood of ruin is the first step in analysing and dealing with risk in both an asset class and portfolio context.

Journal

Journal of Property Investment & FinanceEmerald Publishing

Published: Sep 7, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off