Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Data augmentation using a variational autoencoder for estimating property prices

Data augmentation using a variational autoencoder for estimating property prices Prior studies on the application of deep-learning techniques have focused on enhancing computation algorithms. However, the amount of data is also a key element when attempting to achieve a goal using a quantitative approach, which is often underestimated in practice. The problem of sparse sales data is well known in the valuation of commercial properties. This study aims to expand the limited data available to exploit the capability inherent in deep learning techniques.Design/methodology/approachThe deep learning approach is used. Seoul, the capital of South Korea is selected as a case study area. Second, data augmentation is performed for properties with low trade volume in the market using a variational autoencoder (VAE), which is a generative deep learning technique. Third, the generated samples are added into the original dataset of commercial properties to alleviate data insufficiency. Finally, the accuracy of the price estimation is analyzed for the original and augmented datasets to assess the model performance.FindingsThe results using the sales datasets of commercial properties in Seoul, South Korea as a case study show that the augmented dataset by a VAE consistently shows higher accuracy of price estimation for all 30 trials, and the capabilities inherent in deep learning techniques can be fully exploited, promoting the rapid adoption of artificial intelligence skills in the real estate industry.Originality/valueAlthough deep learning-based algorithms are gaining popularity, they are likely to show limited performance when data are insufficient. This study suggests an alternative approach to overcome the lack of data problem in property valuation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Property Management Emerald Publishing

Data augmentation using a variational autoencoder for estimating property prices

Property Management , Volume 39 (3): 11 – Apr 28, 2021

Loading next page...
 
/lp/emerald-publishing/data-augmentation-using-a-variational-autoencoder-for-estimating-zrtZXvTTyV
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0263-7472
DOI
10.1108/pm-09-2020-0057
Publisher site
See Article on Publisher Site

Abstract

Prior studies on the application of deep-learning techniques have focused on enhancing computation algorithms. However, the amount of data is also a key element when attempting to achieve a goal using a quantitative approach, which is often underestimated in practice. The problem of sparse sales data is well known in the valuation of commercial properties. This study aims to expand the limited data available to exploit the capability inherent in deep learning techniques.Design/methodology/approachThe deep learning approach is used. Seoul, the capital of South Korea is selected as a case study area. Second, data augmentation is performed for properties with low trade volume in the market using a variational autoencoder (VAE), which is a generative deep learning technique. Third, the generated samples are added into the original dataset of commercial properties to alleviate data insufficiency. Finally, the accuracy of the price estimation is analyzed for the original and augmented datasets to assess the model performance.FindingsThe results using the sales datasets of commercial properties in Seoul, South Korea as a case study show that the augmented dataset by a VAE consistently shows higher accuracy of price estimation for all 30 trials, and the capabilities inherent in deep learning techniques can be fully exploited, promoting the rapid adoption of artificial intelligence skills in the real estate industry.Originality/valueAlthough deep learning-based algorithms are gaining popularity, they are likely to show limited performance when data are insufficient. This study suggests an alternative approach to overcome the lack of data problem in property valuation.

Journal

Property ManagementEmerald Publishing

Published: Apr 28, 2021

Keywords: Deep learning; Data augmentation; Variational autoencoder; Property valuation

References