Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Curing study and evaluation of epoxy resin with amine functional chloroaniline acetaldehyde condensate

Curing study and evaluation of epoxy resin with amine functional chloroaniline acetaldehyde... Purpose – The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin. For this purpose, first AFCAC was synthesised, characterised and then curing reaction was carried out. Design/methodology/approach – Equimolecular mixture of AFCAC and DGEBA was subjected to curing reaction, and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction were also carried out from those DSC exotherms. The mechanical properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) of cured epoxy were also reported. Findings – DSC results reflected the effective first order curing reaction of AFCAC with epoxy resin. Mechanical properties reflected appreciable rigidity of AFCAC cured epoxy matrix and TGA showed that the cured epoxy networks were thermally stable up to around 297°C. Research limitations/implications – The curing agent AFCAC was synthesised by using chloroaniline and acetaldehyde in acid medium. There are some limitations for this procedure. The synthetic procedure is pH dependent. So reaction cannot be done at any pH value. The reaction must also be carried out at room temperature without any heating. To obtain low molecular weight curing agent, chloroaniline and acetaldehyde cannot be taken in equimolecular ratio because the equimolecular mixture of them produces high molecular weight condensate. This was shown in our previous publication. Some implications are also there. By changing amine and aldehyde other curing agents could be synthesised and the curing efficiency of those for epoxy resin could also be studied. Originality/value – Experimental results revealed the greater suitability of AFCAC as curing agent for DGEBA resin and novelty of AFCAC cured matrix in the field of protective coating, casting, adhesives, etc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pigment & Resin Technology Emerald Publishing

Curing study and evaluation of epoxy resin with amine functional chloroaniline acetaldehyde condensate

Pigment & Resin Technology , Volume 44 (1): 7 – Jan 5, 2015

Loading next page...
 
/lp/emerald-publishing/curing-study-and-evaluation-of-epoxy-resin-with-amine-functional-OSunXf7QuE
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0369-9420
DOI
10.1108/PRT-03-2014-0024
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper was to check effectiveness of amine functional chloroaniline acetaldehyde condensate (AFCAC) as a new curing agent for diglycidyl ether of bisphenol A (DGEBA) resin. For this purpose, first AFCAC was synthesised, characterised and then curing reaction was carried out. Design/methodology/approach – Equimolecular mixture of AFCAC and DGEBA was subjected to curing reaction, and the reaction was followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction were also carried out from those DSC exotherms. The mechanical properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) of cured epoxy were also reported. Findings – DSC results reflected the effective first order curing reaction of AFCAC with epoxy resin. Mechanical properties reflected appreciable rigidity of AFCAC cured epoxy matrix and TGA showed that the cured epoxy networks were thermally stable up to around 297°C. Research limitations/implications – The curing agent AFCAC was synthesised by using chloroaniline and acetaldehyde in acid medium. There are some limitations for this procedure. The synthetic procedure is pH dependent. So reaction cannot be done at any pH value. The reaction must also be carried out at room temperature without any heating. To obtain low molecular weight curing agent, chloroaniline and acetaldehyde cannot be taken in equimolecular ratio because the equimolecular mixture of them produces high molecular weight condensate. This was shown in our previous publication. Some implications are also there. By changing amine and aldehyde other curing agents could be synthesised and the curing efficiency of those for epoxy resin could also be studied. Originality/value – Experimental results revealed the greater suitability of AFCAC as curing agent for DGEBA resin and novelty of AFCAC cured matrix in the field of protective coating, casting, adhesives, etc.

Journal

Pigment & Resin TechnologyEmerald Publishing

Published: Jan 5, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month