Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Creation of knowledge-added concept maps: time augmention via pairwise temporal analysis

Creation of knowledge-added concept maps: time augmention via pairwise temporal analysis PurposeAlthough acknowledged as a principal dimension in the context of text mining, time has yet to be formally incorporated into the process of visually representing the relationships between keywords in a knowledge domain. This paper aims to develop and validate the feasibility of adding temporal knowledge to a concept map via pair-wise temporal analysis (PTA).Design/methodology/approachThe paper presents a temporal trend detection algorithm – vector space model – designed to use objective quantitative pair-wise temporal operators to automatically detect co-occurring hot concepts. This PTA approach is demonstrated and validated without loss of generality for a spectrum of information technologies.FindingsThe rigorous validation study shows that the resulting temporal assessments are highly correlated with subjective assessments of experts (n = 136), exhibiting substantial reliability-of-agreement measures and average predictive validity above 85 per cent.Practical implicationsUsing massive amounts of textual documents available on the Web to first generate a concept map and then add temporal knowledge, the contribution of this work is emphasized and magnified against the current growing attention to big data analytics.Originality/valueThis paper proposes a novel knowledge discovery method to improve a text-based concept map (i.e. semantic graph) via detection and representation of temporal relationships. The originality and value of the proposed method is highlighted in comparison to other knowledge discovery methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Knowledge Management Emerald Publishing

Creation of knowledge-added concept maps: time augmention via pairwise temporal analysis

Loading next page...
 
/lp/emerald-publishing/creation-of-knowledge-added-concept-maps-time-augmention-via-pairwise-XQgIcUPOKR
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1367-3270
DOI
10.1108/JKM-07-2016-0279
Publisher site
See Article on Publisher Site

Abstract

PurposeAlthough acknowledged as a principal dimension in the context of text mining, time has yet to be formally incorporated into the process of visually representing the relationships between keywords in a knowledge domain. This paper aims to develop and validate the feasibility of adding temporal knowledge to a concept map via pair-wise temporal analysis (PTA).Design/methodology/approachThe paper presents a temporal trend detection algorithm – vector space model – designed to use objective quantitative pair-wise temporal operators to automatically detect co-occurring hot concepts. This PTA approach is demonstrated and validated without loss of generality for a spectrum of information technologies.FindingsThe rigorous validation study shows that the resulting temporal assessments are highly correlated with subjective assessments of experts (n = 136), exhibiting substantial reliability-of-agreement measures and average predictive validity above 85 per cent.Practical implicationsUsing massive amounts of textual documents available on the Web to first generate a concept map and then add temporal knowledge, the contribution of this work is emphasized and magnified against the current growing attention to big data analytics.Originality/valueThis paper proposes a novel knowledge discovery method to improve a text-based concept map (i.e. semantic graph) via detection and representation of temporal relationships. The originality and value of the proposed method is highlighted in comparison to other knowledge discovery methods.

Journal

Journal of Knowledge ManagementEmerald Publishing

Published: Feb 13, 2017

References