Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study is to investigate the effect of panel connections on the hygrothermal performance of facade panels using a coupled, transient heat and moisture transfer analysis.Design/methodology/approachA coupled, transient heat and moisture transfer analysis has been conducted to investigate the effect of panel connections in the hygrothermal behavior of facade panels. Governing partial differential equations for the coupled heat and moisture transfer were formulated. Four panel connections proposed by pre-cast/pre-stressed concrete institute were modeled for the ultra-high performance fiber-reinforced concrete facade panel as illustrations and a finite element method was used to solve the numerical models.FindingsThe results of heat transfer analysis showed that steel connections could significantly reduce the thermal resistivity of facade panels by converging heat fluxes and acting as thermal bridges within facade panels. The results also showed that the maximum heat flux in the steel connector of the panel to foundation connection was 10 times higher compared to the other connections. Also, the results of moisture transfer showed that air gaps between the panels had higher moisture flux compared to the other layers in the models. The results show the significant importance of panel connections in the energy performance analysis of facade systems. They also highlight the importance of devising novel connection designs and materials that consider the transient, coupled heat and moisture transfer in the connections to effectively exploit the potential opportunities provided by innovative facade systems to improve building energy efficiency.Originality/valueThis paper, for the first time, investigates the effect of panel connections in the hygrothermal performance of building facade systems using a coupled, transient heat and moisture transfer analysis.
Journal of Engineering, Design and Technology – Emerald Publishing
Published: Jun 7, 2021
Keywords: Panel connections; Coupled heat and moisture transfer; UHP-FRC facade panel; Hygrothermal performance
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.