Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Corrosion analysis of GTA welded metal matrix composites

Corrosion analysis of GTA welded metal matrix composites Purpose – The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for aerospace, energy, and military purposes, as well as in other industries – for example, they have been used in electronic packaging, aerospace structures, aircraft and internal combustion engine components, and a variety of recreational products. In all these applications, welding plays a vital role. Little attention has been paid to SiC reinforced aluminium matrix composites joined by gas tungsten arc (GTA) welding. The purpose of this paper is to outline the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. Design/methodology/approach – This paper focuses upon production and welding of metal matrix composites. The welded composites have been treated at elevated and cryogenic temperatures for experimental studies. Pitting corrosion analysis of welded plates was carried out as per Box Benkehn Design. Findings – From the results, it should be noted that maximum pitting resistance was observed with MMCs containing 10% SiC treated at cryogenic temperature. Corrosion resistance of welded composites treated at elevated temperature was found to be higher than that of as‐welded and at cryogenic temperature treated composites. The pitting potential increases with increase in % SiC to certain level and decreases with further increase in % SiC. Corrosion potential of composites treated at elevated temperature is high compared to other composites. Maximum pitting resistance is observed when the welding current was kept at 175 amps for 10% addition of SiC in LM25 matrix treated at cryogenic temperature. Originality/value – The paper outlines the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. The results obtained may be helpful for the automobile and aerospace industries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Engineering, Design and Technology Emerald Publishing

Corrosion analysis of GTA welded metal matrix composites

Loading next page...
 
/lp/emerald-publishing/corrosion-analysis-of-gta-welded-metal-matrix-composites-KCV206QEwm
Publisher
Emerald Publishing
Copyright
Copyright © 2012 Emerald Group Publishing Limited. All rights reserved.
ISSN
1726-0531
DOI
10.1108/17260531211211908
Publisher site
See Article on Publisher Site

Abstract

Purpose – The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for aerospace, energy, and military purposes, as well as in other industries – for example, they have been used in electronic packaging, aerospace structures, aircraft and internal combustion engine components, and a variety of recreational products. In all these applications, welding plays a vital role. Little attention has been paid to SiC reinforced aluminium matrix composites joined by gas tungsten arc (GTA) welding. The purpose of this paper is to outline the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. Design/methodology/approach – This paper focuses upon production and welding of metal matrix composites. The welded composites have been treated at elevated and cryogenic temperatures for experimental studies. Pitting corrosion analysis of welded plates was carried out as per Box Benkehn Design. Findings – From the results, it should be noted that maximum pitting resistance was observed with MMCs containing 10% SiC treated at cryogenic temperature. Corrosion resistance of welded composites treated at elevated temperature was found to be higher than that of as‐welded and at cryogenic temperature treated composites. The pitting potential increases with increase in % SiC to certain level and decreases with further increase in % SiC. Corrosion potential of composites treated at elevated temperature is high compared to other composites. Maximum pitting resistance is observed when the welding current was kept at 175 amps for 10% addition of SiC in LM25 matrix treated at cryogenic temperature. Originality/value – The paper outlines the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. The results obtained may be helpful for the automobile and aerospace industries.

Journal

Journal of Engineering, Design and TechnologyEmerald Publishing

Published: Mar 23, 2012

Keywords: Composite materials; Pitting corrosion; Gas tungsten‐arc welding; Metal matrix composites; Stir casting; Cryogenic temperature; Elevated temperature

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month