Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors

Correlation between the initial aging of epoxy coatings and the typical marine atmospheric... The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose of this study is to find the correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors.Design/methodology/approachThe epoxy coatings were subjected to a one-year exposure in three typical marine atmospheres. Meanwhile, principal component analysis, linear regression and Spearman and gray correlation analysis were applied to quantify the environmental characteristics and establish correlations with the coating aging.FindingsThe results indicate that the coating will undergo macroscopic fading and chalking upon exposure to the marine atmosphere, while microscopic examination reveals holes, cracks and partial peeling. The adhesion performance and electrochemical properties of the coating deteriorated with prolonged exposure, coating aging mainly occurs with the generation of O-H bonds and the breakage of molecular chains such as C-N and C-O-C. The coating was most deeply aged after exposure to the Xisha, followed by Zhoushan and finally Qingdao. Environmental factors affect the photooxidative aging and hydrolytic degradation processes of coatings and thus coating aging. To further demonstrate the correlation between environmental factors and coating aging, principal component analysis was used. The correlation model between environmental factors and coating aging was subsequently obtained. The correlation model between the rate of coating adhesion loss (E) and the comprehensive evaluation parameter of environmental factors (Z) is expressed as E = 0.142 + 0.028Z. Meanwhile, the Spearman correlation analysis and gray correlation method were used to investigate the impact of each environmental factor on coating aging. Solar irradiation, relative humidity and wetting time have the highest correlation with coating aging, which are all above 0.8 and have the greatest influence on coating aging; wind speed and temperature have the smallest correlation with coating aging, which are about 0.6 and have the least influence on coating aging.Originality/valueThis paper establishes a correlation between typical marine environmental factors and coating aging performance, which is crucial for predicting the service life of other coatings in diverse environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Anti-Corrosion Methods and Materials Emerald Publishing

Correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors

Loading next page...
 
/lp/emerald-publishing/correlation-between-the-initial-aging-of-epoxy-coatings-and-the-4ba2afIcp9

References (54)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0003-5599
eISSN
0003-5599
DOI
10.1108/acmm-09-2023-2894
Publisher site
See Article on Publisher Site

Abstract

The anticorrosion coatings used in marine and atmospheric environment are subjected to many environmental factors. And the aging failure has been puzzling researchers. The purpose of this study is to find the correlation between the initial aging of epoxy coatings and the typical marine atmospheric environmental factors.Design/methodology/approachThe epoxy coatings were subjected to a one-year exposure in three typical marine atmospheres. Meanwhile, principal component analysis, linear regression and Spearman and gray correlation analysis were applied to quantify the environmental characteristics and establish correlations with the coating aging.FindingsThe results indicate that the coating will undergo macroscopic fading and chalking upon exposure to the marine atmosphere, while microscopic examination reveals holes, cracks and partial peeling. The adhesion performance and electrochemical properties of the coating deteriorated with prolonged exposure, coating aging mainly occurs with the generation of O-H bonds and the breakage of molecular chains such as C-N and C-O-C. The coating was most deeply aged after exposure to the Xisha, followed by Zhoushan and finally Qingdao. Environmental factors affect the photooxidative aging and hydrolytic degradation processes of coatings and thus coating aging. To further demonstrate the correlation between environmental factors and coating aging, principal component analysis was used. The correlation model between environmental factors and coating aging was subsequently obtained. The correlation model between the rate of coating adhesion loss (E) and the comprehensive evaluation parameter of environmental factors (Z) is expressed as E = 0.142 + 0.028Z. Meanwhile, the Spearman correlation analysis and gray correlation method were used to investigate the impact of each environmental factor on coating aging. Solar irradiation, relative humidity and wetting time have the highest correlation with coating aging, which are all above 0.8 and have the greatest influence on coating aging; wind speed and temperature have the smallest correlation with coating aging, which are about 0.6 and have the least influence on coating aging.Originality/valueThis paper establishes a correlation between typical marine environmental factors and coating aging performance, which is crucial for predicting the service life of other coatings in diverse environments.

Journal

Anti-Corrosion Methods and MaterialsEmerald Publishing

Published: Nov 20, 2023

Keywords: Epoxy coating; Marine atmospheric environment; Aging; Quantification of environmental factors; Correlation

There are no references for this article.