Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Convergence improvement of the simultaneous relaxation method used in the finite element analysis of incompressible fluid flows

Convergence improvement of the simultaneous relaxation method used in the finite element analysis... This paper aims to present an improved finite element method used for achieving faster convergence in simulations of incompressible fluid flows. For stable computations of incompressible fluid flows, it is important to ensure that the flow field satisfies the equation of continuity in each element of a generally distorted mesh. The study aims to develop a numerical approach that satisfies this requirement based on the highly simplified marker-and-cell (HSMAC) method and increases computational speed by introducing a new algorithm into the simultaneous relaxation of velocity and pressure.Design/methodology/approachFirst, the paper shows that the classical HSMAC method is equivalent to a Jacobi-type method in terms of the simultaneous relaxation of velocity and pressure. Then, a Gauss–Seidel or successive over-relaxation (SOR)-type method is introduced in the Newton–Raphson iterations to take into account all the derivative terms in the first-order Taylor series expansion of a nodal-averaged error explicitly. Here, the nine-node quadrilateral (Q2–Q1) elements are used.FindingsThe new finite element approach based on the improved HSMAC algorithm is tested on fluid flow problems including the lid-driven square cavity flow and the flow past a circular cylinder. The results show significant improvement of the convergence property with the accuracy of the numerical solutions kept unchanged even on a highly distorted mesh.Originality/valueTo the best of the author’s knowledge, the idea of using the Gauss–Seidel or SOR method in the simultaneous relaxation procedure of the HSMAC method has not been proposed elsewhere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Convergence improvement of the simultaneous relaxation method used in the finite element analysis of incompressible fluid flows

Engineering Computations , Volume 37 (2): 20 – Jul 31, 2019

Loading next page...
 
/lp/emerald-publishing/convergence-improvement-of-the-simultaneous-relaxation-method-used-in-zsjwpvhP0w
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0264-4401
DOI
10.1108/ec-02-2019-0069
Publisher site
See Article on Publisher Site

Abstract

This paper aims to present an improved finite element method used for achieving faster convergence in simulations of incompressible fluid flows. For stable computations of incompressible fluid flows, it is important to ensure that the flow field satisfies the equation of continuity in each element of a generally distorted mesh. The study aims to develop a numerical approach that satisfies this requirement based on the highly simplified marker-and-cell (HSMAC) method and increases computational speed by introducing a new algorithm into the simultaneous relaxation of velocity and pressure.Design/methodology/approachFirst, the paper shows that the classical HSMAC method is equivalent to a Jacobi-type method in terms of the simultaneous relaxation of velocity and pressure. Then, a Gauss–Seidel or successive over-relaxation (SOR)-type method is introduced in the Newton–Raphson iterations to take into account all the derivative terms in the first-order Taylor series expansion of a nodal-averaged error explicitly. Here, the nine-node quadrilateral (Q2–Q1) elements are used.FindingsThe new finite element approach based on the improved HSMAC algorithm is tested on fluid flow problems including the lid-driven square cavity flow and the flow past a circular cylinder. The results show significant improvement of the convergence property with the accuracy of the numerical solutions kept unchanged even on a highly distorted mesh.Originality/valueTo the best of the author’s knowledge, the idea of using the Gauss–Seidel or SOR method in the simultaneous relaxation procedure of the HSMAC method has not been proposed elsewhere.

Journal

Engineering ComputationsEmerald Publishing

Published: Jul 31, 2019

Keywords: Finite element methods; HSMAC method; Incompressible fluid flows; Simultaneous relaxation; Q2-Q1 element

References