Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to present an improved finite element method used for achieving faster convergence in simulations of incompressible fluid flows. For stable computations of incompressible fluid flows, it is important to ensure that the flow field satisfies the equation of continuity in each element of a generally distorted mesh. The study aims to develop a numerical approach that satisfies this requirement based on the highly simplified marker-and-cell (HSMAC) method and increases computational speed by introducing a new algorithm into the simultaneous relaxation of velocity and pressure.Design/methodology/approachFirst, the paper shows that the classical HSMAC method is equivalent to a Jacobi-type method in terms of the simultaneous relaxation of velocity and pressure. Then, a Gauss–Seidel or successive over-relaxation (SOR)-type method is introduced in the Newton–Raphson iterations to take into account all the derivative terms in the first-order Taylor series expansion of a nodal-averaged error explicitly. Here, the nine-node quadrilateral (Q2–Q1) elements are used.FindingsThe new finite element approach based on the improved HSMAC algorithm is tested on fluid flow problems including the lid-driven square cavity flow and the flow past a circular cylinder. The results show significant improvement of the convergence property with the accuracy of the numerical solutions kept unchanged even on a highly distorted mesh.Originality/valueTo the best of the author’s knowledge, the idea of using the Gauss–Seidel or SOR method in the simultaneous relaxation procedure of the HSMAC method has not been proposed elsewhere.
Engineering Computations – Emerald Publishing
Published: Jul 31, 2019
Keywords: Finite element methods; HSMAC method; Incompressible fluid flows; Simultaneous relaxation; Q2-Q1 element
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.