Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this paper is to estimate the contact-consistent object poses during contact-rich manipulation tasks based only on visual sensors.Design/methodology/approachThe method follows a four-step procedure. Initially, the raw object poses are retrieved using the available object pose estimation method and filtered using Kalman filter with nominal model; second, a group of particles are randomly generated for each pose and evaluated the corresponding object contact state using the contact simulation software. A probability guided particle averaging method is proposed to balance the accuracy and safety issues; third, the independently estimated contact states are fused in a hidden Markov model to remove the abnormal contact state observations; finally, the object poses are refined by averaging the contact state consistent particles.FindingsThe experiments are performed to evaluate the effectiveness of the proposed methods. The results show that the method can achieve smooth and accurate pose estimation results and the estimated contact states are consistent with ground truth.Originality/valueThis paper proposes a method to obtain contact-consistent poses and contact states of objects using only visual sensors. The method tries to recover the true contact state from inaccurate visual information by fusing contact simulations results and contact consistency assumptions. The method can be used to extract pose and contact information from object manipulation tasks by just observing the demonstration, which can provide a new way for the robot to learn complex manipulation tasks.
Assembly Automation – Emerald Publishing
Published: Jul 19, 2022
Keywords: Object pose estimation; Pose optimization; Contact simulation; Automatic assembly; Assembly
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.