Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Compliant structures-based wing and wingtip morphing devices

Compliant structures-based wing and wingtip morphing devices Purpose – The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices. Design/methodology/approach – The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept. Findings – It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests. Practical implications – The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts. Originality/value – The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/compliant-structures-based-wing-and-wingtip-morphing-devices-hAhFmgxoUH

References (32)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0002-2667
DOI
10.1108/AEAT-02-2015-0067
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices. Design/methodology/approach – The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept. Findings – It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests. Practical implications – The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts. Originality/value – The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Mar 7, 2016

There are no references for this article.