Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThe study aims to compare tribological properties between laser dimple textured surface and drilled dimple textured surface, and to analyze the influence of dimple hardened edges and ability of trapping wear debris on wear properties of dimple textured surfaces.Design/methodology/approachCircular textured dimples were produced on AISI 1,045 specimen surfaces using laser surface texturing (LST) and drilled surface texturing (DST) methods. Tribological behaviors of LST, DST and non-textured specimens were studied using ball-on-disc tribo-tester. Metallographic structures, dimples and worn surface morphologies were observed using a three-dimensional digital microscope. Hardnesses of substrate and dimple edges were measured.FindingsThere was no obvious difference in wear and friction coefficients between LST and DST specimens. Hardnesses of laser dimple edges were much higher than that of drilled dimple edges and specimen substrate. The hardened materials of laser dimple edge included recast zone and heat affect zone. Laser dimple was cone-shaped and drilled dimple was cylinder-shaped. Drilled dimple had a better ability of trapping wear debris than laser dimple. Non-uniform wear phenomenon occurred on worn surfaces of LST dimple specimens.Originality/valueThe ability of textured dimples to trap wear debris is affected by single dimple volume. Hardened edges of dimples cause non-uniform wear on worn surfaces of LST specimens.
Industrial Lubrication and Tribology – Emerald Publishing
Published: Jul 10, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.