Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to address the performance of different subgrid-scale models (SGS) for hydro- (HD) and magnetohydrodynamic (MHD) channel flows within a collocated finite-volume scheme.Design/methodology/approachFirst, the SGS energy transfer is analyzed by a priori tests using fully resolved DNS data. Here, the focus lies on the influence of the magnetic field on the SGS energy transport. Second, the authors performed a series of 18 a posteriori model tests, using different grid resolutions and SGS models for HD and MHD channel flows.FindingsFrom the a priori analysis, the authors observe a quantitative reduction of the SGS energy transport because of the action of the magnetic field depending on its orientation. The a posteriori model tests show a clear improvement because of the use of mixed-models within the numerical scheme.Originality/valueThis study demonstrates the necessity of improved SGS modeling strategies for magnetohydrodynamic channel flows within a collocated finite-volume scheme.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Aug 30, 2019
Keywords: Magnetohydrodynamics; Large-eddy simulation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.