Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem

Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project... PurposeConstruction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint).Design/methodology/approachA direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.FindingsComputational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.Research limitations/implicationsIt is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.Originality/valueAn integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering, Construction and Architectural Management Emerald Publishing

Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem

Loading next page...
 
/lp/emerald-publishing/comparing-optimization-modeling-approaches-for-the-multi-mode-resource-pHCcGmR5q3
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0969-9988
DOI
10.1108/ECAM-03-2019-0156
Publisher site
See Article on Publisher Site

Abstract

PurposeConstruction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint).Design/methodology/approachA direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.FindingsComputational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.Research limitations/implicationsIt is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.Originality/valueAn integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects.

Journal

Engineering, Construction and Architectural ManagementEmerald Publishing

Published: Nov 11, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off