Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this paper is the computation of the elastic mechanical behaviour of the fullerene C60 reinforced polyamide-12 (PA-12) via a two-stage numerical technique which combines the molecular dynamics (MD) method and the finite element method (FEM).Design/methodology/approachAt the first stage, the proposed numerical scheme utilizes MD to characterize the pure PA-12 as well as a very small cubic unit cell containing a C60 molecule, centrally positioned and surrounded by PA-12 molecular chains. At the second stage, a classical continuum mechanics (CM) analysis based on the FEM is adopted to approximate the elastic mechanical performance of the nanocomposite with significantly lower C60 mass concentrations. According to the computed elastic properties arisen by the MD simulations, an equivalent solid element with the same size as the unit cell is developed. Then, a CM micromechanical representative volume element (RVE) of the C60 reinforced PA-12 is modelled via FEM. The matrix phase of the RVE is discretized by using solid finite elements which represent the PA-12 mechanical behaviour predicted by MD, while the C60 neighbouring location is meshed with the equivalent solid element.FindingsSeveral multiscale simulations are performed to study the effect of the nanofiller mass fraction on the mechanical properties of the C60 reinforced PA-12 composite. Comparisons with other corresponding experimental results are attempted, where possible, to test the performance of the proposed method.Originality/valueThe proposed numerical scheme allows accurate representation of atomistic interfacial effects between C60 and PA-12 and simultaneously offers a significantly lower computational cost compared with the MD-only method.
International Journal of Structural Integrity – Emerald Publishing
Published: Jul 19, 2019
Keywords: Molecular dynamics; Finite element method; Nanocomposite; Polyamide; Fullerene
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.