Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Co-rotating vortex interaction

Co-rotating vortex interaction Purpose – The purpose of this paper is to study the structure and dynamic development of a pair of co-rotating trailing vortices, during their formation, interaction and merging, using detailed experimental measurements of the velocity and vorticity fields. Design/methodology/approach – The vortices were generated using two half wings (NACA0030) positioned at equal and opposite angles of attack at the entrance of the test section of an open-circuit, subsonic, wind tunnel. Velocity vector measurements were obtained at Re c = 133,000, on cross-plane grids at several distances from the trailing edges of the wings, using an in-house developed four-sensor hot wire anemometer probe. Findings – The results include cross-plane contour plots of the mean and fluctuating velocity as well as mean vorticity fields. Each of these variables is affected in a different way, providing complementary information on the development of the flow field. After shedding, the two vortices are swept along the stream-wise direction and spiral around each other, thereby developing a braid of two vortices, which then deforms the external flow field. Gradually, the interaction with the external flow field links both vortices together until the final merging and the formation of a new stable linear vortex emerges. Practical implications – Trailing vortices have been rendered particularly important during the past decades, because of increasing traffic density of very heavy aircrafts and several plane “incidents”, which were attributed to the action of the vortex wake. Originality/value – The presented results provide information on the evolution and merging of a pair of vortices formed by a closely spaced differential wing configuration. The vortices interact almost immediately after shedding as expected in flap–flap or flap–wing vortices interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/co-rotating-vortex-interaction-Q6lMdEn9Iq

References (32)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0002-2667
DOI
10.1108/AEAT-02-2015-0071
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to study the structure and dynamic development of a pair of co-rotating trailing vortices, during their formation, interaction and merging, using detailed experimental measurements of the velocity and vorticity fields. Design/methodology/approach – The vortices were generated using two half wings (NACA0030) positioned at equal and opposite angles of attack at the entrance of the test section of an open-circuit, subsonic, wind tunnel. Velocity vector measurements were obtained at Re c = 133,000, on cross-plane grids at several distances from the trailing edges of the wings, using an in-house developed four-sensor hot wire anemometer probe. Findings – The results include cross-plane contour plots of the mean and fluctuating velocity as well as mean vorticity fields. Each of these variables is affected in a different way, providing complementary information on the development of the flow field. After shedding, the two vortices are swept along the stream-wise direction and spiral around each other, thereby developing a braid of two vortices, which then deforms the external flow field. Gradually, the interaction with the external flow field links both vortices together until the final merging and the formation of a new stable linear vortex emerges. Practical implications – Trailing vortices have been rendered particularly important during the past decades, because of increasing traffic density of very heavy aircrafts and several plane “incidents”, which were attributed to the action of the vortex wake. Originality/value – The presented results provide information on the evolution and merging of a pair of vortices formed by a closely spaced differential wing configuration. The vortices interact almost immediately after shedding as expected in flap–flap or flap–wing vortices interaction.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: Mar 7, 2016

There are no references for this article.