Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Close range depth sensing cameras for virtual reality based hand rehabilitation

Close range depth sensing cameras for virtual reality based hand rehabilitation Purpose – The Leap Motion represents a new generation of depth sensing cameras designed for close range tracking of hands and fingers, operating with minimal latency and high spatial precision (0.01 mm). The purpose of this paper is to develop virtual reality (VR) simulations of three well-known hand-based rehabilitation tasks using a commercial game engine and utilising a Leap camera as the primary mode of interaction. The authors present results from an initial evaluation by professional clinicians of these VR simulations for use in their hand and finger physical therapy practice. Design/methodology/approach – A cross-disciplinary team of researchers collaborated with a local software company to create three dimension interactive simulations of three hand focused rehabilitation tasks: Cotton Balls, Stacking Blocks, and the Nine Hole Peg Test. These simulations were presented to a group of eight physiotherapists and occupational therapists ( n =8) based in the Regional Acquired Brain Injury Unit, Belfast Health, and Social Care Trust for evaluation. After induction, the clinicians attempted the tasks presented and provided feedback by filling out a questionnaire. Findings – Results from questionnaires (using a Likert scale 1-7, where 1 was the most favourable response) revealed a positive response to the simulations with an overall mean score across all questions equal to 2.59. Clinicians indicated that the system contained tasks that were easy to understand (mean score 1.88), and though it took several attempts to become competent, they predicted that they would improve with practice (mean score 2.25). In general, clinicians thought the prototypes provided a good illustration of the tasks required in their practice (mean score 2.38) and that patients would likely be motivated to use the system (mean score 2.38), especially young patients (mean score 1.63), and in the home environment (mean score 2.5). Originality/value – Cameras offer an unobtrusive and low maintenance approach to tracking user motion in VR therapy in comparison to methods based on wearable technologies. This paper presents positive results from an evaluation of the new Leap Motion camera for input control of VR simulations or games. This mode of interaction provides a low cost, easy to use, high-resolution system for tracking fingers and hands, and has great potential for home-based physical therapies, particularly for young people. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Assistive Technologies Emerald Publishing

Close range depth sensing cameras for virtual reality based hand rehabilitation

Loading next page...
 
/lp/emerald-publishing/close-range-depth-sensing-cameras-for-virtual-reality-based-hand-zin1WxXn59
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1754-9450
DOI
10.1108/JAT-02-2014-0007
Publisher site
See Article on Publisher Site

Abstract

Purpose – The Leap Motion represents a new generation of depth sensing cameras designed for close range tracking of hands and fingers, operating with minimal latency and high spatial precision (0.01 mm). The purpose of this paper is to develop virtual reality (VR) simulations of three well-known hand-based rehabilitation tasks using a commercial game engine and utilising a Leap camera as the primary mode of interaction. The authors present results from an initial evaluation by professional clinicians of these VR simulations for use in their hand and finger physical therapy practice. Design/methodology/approach – A cross-disciplinary team of researchers collaborated with a local software company to create three dimension interactive simulations of three hand focused rehabilitation tasks: Cotton Balls, Stacking Blocks, and the Nine Hole Peg Test. These simulations were presented to a group of eight physiotherapists and occupational therapists ( n =8) based in the Regional Acquired Brain Injury Unit, Belfast Health, and Social Care Trust for evaluation. After induction, the clinicians attempted the tasks presented and provided feedback by filling out a questionnaire. Findings – Results from questionnaires (using a Likert scale 1-7, where 1 was the most favourable response) revealed a positive response to the simulations with an overall mean score across all questions equal to 2.59. Clinicians indicated that the system contained tasks that were easy to understand (mean score 1.88), and though it took several attempts to become competent, they predicted that they would improve with practice (mean score 2.25). In general, clinicians thought the prototypes provided a good illustration of the tasks required in their practice (mean score 2.38) and that patients would likely be motivated to use the system (mean score 2.38), especially young patients (mean score 1.63), and in the home environment (mean score 2.5). Originality/value – Cameras offer an unobtrusive and low maintenance approach to tracking user motion in VR therapy in comparison to methods based on wearable technologies. This paper presents positive results from an evaluation of the new Leap Motion camera for input control of VR simulations or games. This mode of interaction provides a low cost, easy to use, high-resolution system for tracking fingers and hands, and has great potential for home-based physical therapies, particularly for young people.

Journal

Journal of Assistive TechnologiesEmerald Publishing

Published: Sep 9, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month