CFD simulation of momentum injection control past a streamlined body

CFD simulation of momentum injection control past a streamlined body Purpose – The purpose of this paper is to achieve high‐performance aerofoils that enable delayed stall conditions and achieve high lift to drag ratios. Design/methodology/approach – The unsteady Reynolds averaged Navier‐Stokes equations are employed in conjunction with a shear stress transport ( κ‐ω ) turbulence model. A control equation is designed and implemented to determine the temporal response of the actuator. A rotating element, in the form of an actuator disc, is embedded on the leading edge of NACA 0012 aerofoil, to inject momentum into the wake region. The actuator disc is rotated at different angular speeds, for angles of attack ( α ) between 00 and 240. Findings – Phenomena such as flow separation, wake vortices, delayed stall, wake control, etc. are numerically investigated by means of streamlines, streaklines, isobars, etc. Streamwise and cross‐stream forces on the aerofoil are obtained. The influence of momentum injection parameter ( ξ ) on the fluid flow patterns, and hence on the forces acting on the streamlined body are determined. A synchronization‐based coupling scheme is designed and implemented to achieve annihilation of wake vortices. A delayed stall angle resulted with an attendant increase in maximum lift coefficient. Due to delay and/or prevention of separation, drag coefficient is also reduced considerably, resulting in a high‐performance lifting surface. Research limitations/implications – The practicality of momentum injection principle requires both wide ranging and intensive further studies to move forward beyond the proof of concept stage. Practical implications – Determination of forces and moments on an aerofoil is of vital interest in aero‐dynamic design. Perhaps, runways of the future can be shorter and/or more pay load can be carried by an aircraft, for the same stall speed. Originality/value – The paper describes how a synchronization‐based coupling scheme is designed and implemented along with the RANS solver. Furthermore, it is tested to verify the dynamic adaptability of the wake vortex annihilation for NACA 0012 aerofoils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

CFD simulation of momentum injection control past a streamlined body

Loading next page...
 
/lp/emerald-publishing/cfd-simulation-of-momentum-injection-control-past-a-streamlined-body-Bp0kAfQfWu
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615531111177750
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to achieve high‐performance aerofoils that enable delayed stall conditions and achieve high lift to drag ratios. Design/methodology/approach – The unsteady Reynolds averaged Navier‐Stokes equations are employed in conjunction with a shear stress transport ( κ‐ω ) turbulence model. A control equation is designed and implemented to determine the temporal response of the actuator. A rotating element, in the form of an actuator disc, is embedded on the leading edge of NACA 0012 aerofoil, to inject momentum into the wake region. The actuator disc is rotated at different angular speeds, for angles of attack ( α ) between 00 and 240. Findings – Phenomena such as flow separation, wake vortices, delayed stall, wake control, etc. are numerically investigated by means of streamlines, streaklines, isobars, etc. Streamwise and cross‐stream forces on the aerofoil are obtained. The influence of momentum injection parameter ( ξ ) on the fluid flow patterns, and hence on the forces acting on the streamlined body are determined. A synchronization‐based coupling scheme is designed and implemented to achieve annihilation of wake vortices. A delayed stall angle resulted with an attendant increase in maximum lift coefficient. Due to delay and/or prevention of separation, drag coefficient is also reduced considerably, resulting in a high‐performance lifting surface. Research limitations/implications – The practicality of momentum injection principle requires both wide ranging and intensive further studies to move forward beyond the proof of concept stage. Practical implications – Determination of forces and moments on an aerofoil is of vital interest in aero‐dynamic design. Perhaps, runways of the future can be shorter and/or more pay load can be carried by an aircraft, for the same stall speed. Originality/value – The paper describes how a synchronization‐based coupling scheme is designed and implemented along with the RANS solver. Furthermore, it is tested to verify the dynamic adaptability of the wake vortex annihilation for NACA 0012 aerofoils.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Nov 1, 2011

Keywords: Aerospace industry; Fluid dynamics; Actuators; Force measurement; Aerofoils; Momentum injection

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off