Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to fabricate cellular Ti6Al4V with carbon nanotube (CNT)-like structures by selective electron beam melting and study the resultant mechanical properties based on each respective geometry to provide fundamental information for optimizing molecular architectures and predicting the mechanical properties of cellular solids. Design/methodology/approach – Cellular Ti6Al4V with CNT-like zigzag and armchair structures are fabricated by selected electron beam melting. The microstructures and mechanical properties of these samples are evaluated utilizing scanning electron microscopy, synchrotron radiation X-ray and compressive tests. Findings – The mechanical properties of the cellular solids depend on the geometry of strut architectures. The armchair-structured Ti6Al4V samples exhibit Young’s modulus from 501.10 to 707.60 MPa and compressive strength from 8.73 to 13.45 MPa. The zigzag structured samples demonstrate Young’s modulus from 548.19 to 829.58 MPa and compressive strength from 9.32 to 16.21 MPa. The results suggest that the zigzag structure of the Ti6Al4V cellular solids can achieve improved mechanical properties and the mechanism for the enhanced mechanical properties in the zigzag structures was revealed. Originality/value – The results provide an innovative example for modulating the mechanical properties of cellular titanium by adjusting the unit cell geometry. The Ti6Al4V cellular solids with single-walled CNT-like structures could be used as light-weight construction components or filters in industries. The Ti6Al4V with multiwalled CNT-like structures could be used as new scaffolds for biomedical applications.
Rapid Prototyping Journal – Emerald Publishing
Published: Oct 20, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.