Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Breakout variable neighbourhood search for the minimum interference frequency assignment problem

Breakout variable neighbourhood search for the minimum interference frequency assignment problem This paper aims to describe two enhancements of the variable neighbourhood search (VNS) algorithm to solve efficiently the minimum interference frequency assignment problem (MI-FAP) which is a major issue in the radio networks, as well as a well-known NP-hard combinatorial optimisation problem. The challenge is to assign a frequency to each transceiver of the network with limited or no interferences at all. Indeed, considering that the number of radio networks users is ever increasing and that the radio spectrum is a scarce and expensive resource, the latter should be carefully managed to avoid any interference.Design/methodology/approachThe authors suggest two new enhanced VNS variants for MI-FAP, namely, the iterated VNS (It-VNS) and the breakout VNS (BVNS). These two algorithms were designed based on the hybridising and the collaboration approaches that have emerged as two powerful means to solve hard combinatorial optimisation problems. Therefore, these two methods draw their strength from other meta-heuristics. In addition, the authors introduced a new mechanism of perturbation to enhance the performance of VNS. An extensive experiment was conducted to evaluate the performance of the proposed methods on some well-known MI-FAP datasets. Moreover, they carried out a comparative study with other metaheuristics and achieved the Friedman’s non-parametric statistical test to check the actual effect of the proposed enhancements.FindingsThe experiments showed that the two enhanced methods (It-VNS) and (BVNS) achieved better results than the VNS method. The comparative study with other meta-heuristics showed that the results are competitive and very encouraging. The Friedman’s non-parametric statistical test reveals clearly that the results of the three methods (It-VNS, BVNS and VNS) are significantly different. The authors therefore carried out the Nemenyi’s post hoc test which allowed us to identify those differences. The impact of the operated change on both the It-VNS and BVNS was thus confirmed. The proposed BVNS is competitive and able to produce good results as compared with both It-VNS and VNS for MI-FAP.Research limitations/implicationsApproached methods and particularly newly designed ones may have some drawbacks that weaken the results, in particular when dealing with extensive data. These limitations should therefore be eliminated through an appropriate approach with a view to design appropriate methods in the case of large-scale data.Practical implicationsThe authors designed and implemented two new variants of the VNS algorithm before carrying out an exhaustive experimental study. The findings highlighted the potential opportunities of these two enhanced methods which could be adapted and applied to other combinatorial optimisation problems, real world applications or academic problems.Originality/valueThis paper aims at enhancing the VNS algorithm through two new approaches, namely, the It-VNS and the BVNS. These two methods were applied to the MI-FAP which is a crucial problem arising in a radio network. The numerical results are interesting and demonstrate the benefits of the proposed approaches in particular BVNS for MI-FAP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Systems and Information Technology Emerald Publishing

Breakout variable neighbourhood search for the minimum interference frequency assignment problem

Loading next page...
 
/lp/emerald-publishing/breakout-variable-neighbourhood-search-for-the-minimum-interference-Lau73aa0iD

References (32)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1328-7265
DOI
10.1108/jsit-10-2017-0094
Publisher site
See Article on Publisher Site

Abstract

This paper aims to describe two enhancements of the variable neighbourhood search (VNS) algorithm to solve efficiently the minimum interference frequency assignment problem (MI-FAP) which is a major issue in the radio networks, as well as a well-known NP-hard combinatorial optimisation problem. The challenge is to assign a frequency to each transceiver of the network with limited or no interferences at all. Indeed, considering that the number of radio networks users is ever increasing and that the radio spectrum is a scarce and expensive resource, the latter should be carefully managed to avoid any interference.Design/methodology/approachThe authors suggest two new enhanced VNS variants for MI-FAP, namely, the iterated VNS (It-VNS) and the breakout VNS (BVNS). These two algorithms were designed based on the hybridising and the collaboration approaches that have emerged as two powerful means to solve hard combinatorial optimisation problems. Therefore, these two methods draw their strength from other meta-heuristics. In addition, the authors introduced a new mechanism of perturbation to enhance the performance of VNS. An extensive experiment was conducted to evaluate the performance of the proposed methods on some well-known MI-FAP datasets. Moreover, they carried out a comparative study with other metaheuristics and achieved the Friedman’s non-parametric statistical test to check the actual effect of the proposed enhancements.FindingsThe experiments showed that the two enhanced methods (It-VNS) and (BVNS) achieved better results than the VNS method. The comparative study with other meta-heuristics showed that the results are competitive and very encouraging. The Friedman’s non-parametric statistical test reveals clearly that the results of the three methods (It-VNS, BVNS and VNS) are significantly different. The authors therefore carried out the Nemenyi’s post hoc test which allowed us to identify those differences. The impact of the operated change on both the It-VNS and BVNS was thus confirmed. The proposed BVNS is competitive and able to produce good results as compared with both It-VNS and VNS for MI-FAP.Research limitations/implicationsApproached methods and particularly newly designed ones may have some drawbacks that weaken the results, in particular when dealing with extensive data. These limitations should therefore be eliminated through an appropriate approach with a view to design appropriate methods in the case of large-scale data.Practical implicationsThe authors designed and implemented two new variants of the VNS algorithm before carrying out an exhaustive experimental study. The findings highlighted the potential opportunities of these two enhanced methods which could be adapted and applied to other combinatorial optimisation problems, real world applications or academic problems.Originality/valueThis paper aims at enhancing the VNS algorithm through two new approaches, namely, the It-VNS and the BVNS. These two methods were applied to the MI-FAP which is a crucial problem arising in a radio network. The numerical results are interesting and demonstrate the benefits of the proposed approaches in particular BVNS for MI-FAP.

Journal

Journal of Systems and Information TechnologyEmerald Publishing

Published: Nov 30, 2018

Keywords: Optimisation; Breakout VNS; It-VNS; MI-FAP; VNS

There are no references for this article.