Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – Bounds on the rate of convergence of learning processes based on random samples and probability are one of the essential components of statistical learning theory (SLT). The constructive distribution‐independent bounds on generalization are the cornerstone of constructing support vector machines. Random sets and set‐valued probability are important extensions of random variables and probability, respectively. The paper aims to address these issues. Design/methodology/approach – In this study, the bounds on the rate of convergence of learning processes based on random sets and set‐valued probability are discussed. First, the Hoeffding inequality is enhanced based on random sets, and then making use of the key theorem the non‐constructive distribution‐dependent bounds of learning machines based on random sets in set‐valued probability space are revisited. Second, some properties of random sets and set‐valued probability are discussed. Findings – In the sequel, the concepts of the annealed entropy, the growth function, and VC dimension of a set of random sets are presented. Finally, the paper establishes the VC dimension theory of SLT based on random sets and set‐valued probability, and then develops the constructive distribution‐independent bounds on the rate of uniform convergence of learning processes. It shows that such bounds are important to the analysis of the generalization abilities of learning machines. Originality/value – SLT is considered at present as one of the fundamental theories about small statistical learning.
Kybernetes – Emerald Publishing
Published: Oct 18, 2011
Keywords: Random sets; Set‐valued probability; The key theorem; VC dimension; Rate of uniform convergence; Learning processes; Probability theory
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.