Biogeography migration algorithm for traveling salesman problem

Biogeography migration algorithm for traveling salesman problem Purpose – Biogeography‐based optimization algorithm is a new kind of optimization algorithm based on biogeography. It is designed based on the migration strategy of animals to solve the problem of optimization. The purpose of this paper is to present a new algorithm – biogeography migration algorithm for traveling salesman problem (TSPBMA). A new special migration operator is designed for producing new solutions. Design/methodology/approach – The paper gives the definition of TSP and models of TSPBMA; introduces the algorithm of TSPBMA in detail and gives the proof of convergence in theory; provides simulation results of TSPBMA compared with other optimization algorithms for TSP and presents some concluding remarks and suggestions for further work. Findings – The TSPBMA is tested on some classical TSP problems. The comparison results with the other nature‐inspired optimization algorithms show that TSPBMA is useful for TSP combination optimization. Especially, the designed migration operator is very effective for TSP solving. Although the proposed TSPBMA is not better than ant colony algorithm in the respect of convergence speed and accuracy, it provides a new way for this kind of problem. Originality/value – The migration operator is a new strategy for solving TSPs. It has never been used by any other evolutionary algorithm or swarm intelligence before TSPBMA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

Biogeography migration algorithm for traveling salesman problem

Loading next page...
 
/lp/emerald-publishing/biogeography-migration-algorithm-for-traveling-salesman-problem-RpaAaIbkVS
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
1756-378X
DOI
10.1108/17563781111160002
Publisher site
See Article on Publisher Site

Abstract

Purpose – Biogeography‐based optimization algorithm is a new kind of optimization algorithm based on biogeography. It is designed based on the migration strategy of animals to solve the problem of optimization. The purpose of this paper is to present a new algorithm – biogeography migration algorithm for traveling salesman problem (TSPBMA). A new special migration operator is designed for producing new solutions. Design/methodology/approach – The paper gives the definition of TSP and models of TSPBMA; introduces the algorithm of TSPBMA in detail and gives the proof of convergence in theory; provides simulation results of TSPBMA compared with other optimization algorithms for TSP and presents some concluding remarks and suggestions for further work. Findings – The TSPBMA is tested on some classical TSP problems. The comparison results with the other nature‐inspired optimization algorithms show that TSPBMA is useful for TSP combination optimization. Especially, the designed migration operator is very effective for TSP solving. Although the proposed TSPBMA is not better than ant colony algorithm in the respect of convergence speed and accuracy, it provides a new way for this kind of problem. Originality/value – The migration operator is a new strategy for solving TSPs. It has never been used by any other evolutionary algorithm or swarm intelligence before TSPBMA.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Aug 23, 2011

Keywords: Biogeography; Biogeography‐based optimization; Biogeography migration algorithm; Traveling salesman problem; Programming and algorithm theory; Optimization techniques

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off