Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Bilinear Approximation of Anisotropic Stress-Strain Properties of Woven Fabrics

Bilinear Approximation of Anisotropic Stress-Strain Properties of Woven Fabrics In the theoretical derivation of the anisotropic model of the woven fabric, Kilby (1963) achieved the symmetric anisotropy model. Yet, in practice, the warp behavior of a woven fabric is rarely identical to the weft behavior, even in the case of plain weave fabric of identical yarns in both warp and weft directions because of the manufacturing process. The closed form analytic solution of the asymmetric anisotropic behaviour is very difficult to find for real fabric, due to its nonlinear properties. Therefore, it is important to derive an efficient and accurate method to approximate the nonlinear fabric anisotropy. This paper discusses the issue of incorporating the tensile fabric properties and the bias angle effect into a bilinear stress-strain model. The stress-strain relationship is divided into two regions, below and above the elastic limit. Within each region, a basis function, based on three data points, is used to approximate the angular effect. The advantages of this method include: (1) its simplicity, (2) robust 2-step lookup operation to obtain the answer, (3) full coverage of both linear and nonlinear elastic regions, and (4) ability to achieve high degree of accuracy with only three data points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research Journal of Textile and Apparel Emerald Publishing

Bilinear Approximation of Anisotropic Stress-Strain Properties of Woven Fabrics

Loading next page...
 
/lp/emerald-publishing/bilinear-approximation-of-anisotropic-stress-strain-properties-of-phAgzKQPI0
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1560-6074
DOI
10.1108/RJTA-09-04-2005-B005
Publisher site
See Article on Publisher Site

Abstract

In the theoretical derivation of the anisotropic model of the woven fabric, Kilby (1963) achieved the symmetric anisotropy model. Yet, in practice, the warp behavior of a woven fabric is rarely identical to the weft behavior, even in the case of plain weave fabric of identical yarns in both warp and weft directions because of the manufacturing process. The closed form analytic solution of the asymmetric anisotropic behaviour is very difficult to find for real fabric, due to its nonlinear properties. Therefore, it is important to derive an efficient and accurate method to approximate the nonlinear fabric anisotropy. This paper discusses the issue of incorporating the tensile fabric properties and the bias angle effect into a bilinear stress-strain model. The stress-strain relationship is divided into two regions, below and above the elastic limit. Within each region, a basis function, based on three data points, is used to approximate the angular effect. The advantages of this method include: (1) its simplicity, (2) robust 2-step lookup operation to obtain the answer, (3) full coverage of both linear and nonlinear elastic regions, and (4) ability to achieve high degree of accuracy with only three data points.

Journal

Research Journal of Textile and ApparelEmerald Publishing

Published: Nov 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month