Best performance modeling using complementary DEA-ANN approach

Best performance modeling using complementary DEA-ANN approach Purpose – The purpose of this paper is to design an innovative performance modeling system by jointly using data envelopment analysis (DEA) and artificial neural network (ANN). The hybrid DEA-ANN model integrates performance measurement and prediction frameworks and serves as an adaptive decision support tool in pursuit of best performance benchmarking and stepwise improvement. Design/methodology/approach – Advantages of combining DEA and ANN methods into an optimal performance prediction model are explored. DEA is used as a preprocessor to measure relative performance of decision-making units (DMUs) and to generate test inputs for subsequent ANN prediction modules. For this sequential process, Charnes, Cooper, and Rhodes and Banker, Chames and Cooper DEA models and back propagation neural network (BPNN) are used. The proposed methodology is empirically supported using longitudinal data of Japanese electronics manufacturing firms. Findings – The combined modeling approach proves effective through sequential processes by streamlining DEA analysis and BPNN predictions. The DEA model captures notable characteristics and efficiency trends of the Japanese electronics manufacturing industry and extends its utility as a preprocessor to neural network prediction modules. BPNN, in conjunction with DEA, demonstrates promising estimation capability in predicting efficiency scores and best performance benchmarks for DMUs under evaluation. Research limitations/implications – Integration of adaptive prediction capacity into the measurement model is a practical necessity in the benchmarking arena. The proposed framework has the potential to recalibrate benchmarks for firms through longitudinal data analysis. Originality/value – This research paper proposes an innovative approach of performance measurement and prediction in line with superiority-driven best performance modeling. Adaptive prediction capabilities embedded in the proposed model enhances managerial flexibilities in setting performance goals and monitoring progress during pursuit of improvement initiatives. This paper fills the research void through methodological breakthrough and the resulting model can serve as an adaptive decision support system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Benchmarking: An International Journal Emerald Publishing

Best performance modeling using complementary DEA-ANN approach

Loading next page...
 
/lp/emerald-publishing/best-performance-modeling-using-complementary-dea-ann-approach-mRA1GoQw0W
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1463-5771
DOI
10.1108/BIJ-09-2014-0083
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to design an innovative performance modeling system by jointly using data envelopment analysis (DEA) and artificial neural network (ANN). The hybrid DEA-ANN model integrates performance measurement and prediction frameworks and serves as an adaptive decision support tool in pursuit of best performance benchmarking and stepwise improvement. Design/methodology/approach – Advantages of combining DEA and ANN methods into an optimal performance prediction model are explored. DEA is used as a preprocessor to measure relative performance of decision-making units (DMUs) and to generate test inputs for subsequent ANN prediction modules. For this sequential process, Charnes, Cooper, and Rhodes and Banker, Chames and Cooper DEA models and back propagation neural network (BPNN) are used. The proposed methodology is empirically supported using longitudinal data of Japanese electronics manufacturing firms. Findings – The combined modeling approach proves effective through sequential processes by streamlining DEA analysis and BPNN predictions. The DEA model captures notable characteristics and efficiency trends of the Japanese electronics manufacturing industry and extends its utility as a preprocessor to neural network prediction modules. BPNN, in conjunction with DEA, demonstrates promising estimation capability in predicting efficiency scores and best performance benchmarks for DMUs under evaluation. Research limitations/implications – Integration of adaptive prediction capacity into the measurement model is a practical necessity in the benchmarking arena. The proposed framework has the potential to recalibrate benchmarks for firms through longitudinal data analysis. Originality/value – This research paper proposes an innovative approach of performance measurement and prediction in line with superiority-driven best performance modeling. Adaptive prediction capabilities embedded in the proposed model enhances managerial flexibilities in setting performance goals and monitoring progress during pursuit of improvement initiatives. This paper fills the research void through methodological breakthrough and the resulting model can serve as an adaptive decision support system.

Journal

Benchmarking: An International JournalEmerald Publishing

Published: Apr 4, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off