Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Basis pursuit‐based intelligent diagnosis of bearing faults

Basis pursuit‐based intelligent diagnosis of bearing faults Purpose – The purpose of this article is to present a new application of pursuit‐based analysis for diagnosing rolling element bearing faults. Design/methodology/approach – Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique‐based fault detection and identification. This paper presents a comparative study of both the basis and matching pursuits when applied to fault diagnosis of rolling element bearings using vibration analysis. Findings – Fault features were extracted from vibration acceleration signals and subsequently fed to a feed forward neural network (FFNN) for classification. The classification rate and mean square error (MSE) were calculated to evaluate the performance of the intelligent diagnostic procedure. Results from the basis pursuit fault diagnosis procedure were compared with the classification result of a matching pursuit feature‐based diagnostic procedure. The comparison clearly illustrates that basis pursuit feature‐based fault diagnosis is significantly more accurate than matching pursuit feature‐based fault diagnosis in detecting these faults. Practical implications – Intelligent diagnosis can reduce the reliance on experienced personnel to make expert judgements on the state of the integrity of machines. The proposed method has the potential to be extensively applied in various industrial scenarios, although this application concerned rolling element bearings only. The principles of the application are directly translatable to other parts of complex machinery. Originality/value – This work presents a novel intelligent diagnosis strategy using pursuit features and feed forward neural networks. The value of the work is to ease the burden of making decisions on the integrity of plant through a manual program in condition monitoring and diagnostics particularly of complex pieces of plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Quality in Maintenance Engineering Emerald Publishing

Basis pursuit‐based intelligent diagnosis of bearing faults

Loading next page...
 
/lp/emerald-publishing/basis-pursuit-based-intelligent-diagnosis-of-bearing-faults-tSAam050ux
Publisher
Emerald Publishing
Copyright
Copyright © 2007 Emerald Group Publishing Limited. All rights reserved.
ISSN
1355-2511
DOI
10.1108/13552510710753050
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this article is to present a new application of pursuit‐based analysis for diagnosing rolling element bearing faults. Design/methodology/approach – Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique‐based fault detection and identification. This paper presents a comparative study of both the basis and matching pursuits when applied to fault diagnosis of rolling element bearings using vibration analysis. Findings – Fault features were extracted from vibration acceleration signals and subsequently fed to a feed forward neural network (FFNN) for classification. The classification rate and mean square error (MSE) were calculated to evaluate the performance of the intelligent diagnostic procedure. Results from the basis pursuit fault diagnosis procedure were compared with the classification result of a matching pursuit feature‐based diagnostic procedure. The comparison clearly illustrates that basis pursuit feature‐based fault diagnosis is significantly more accurate than matching pursuit feature‐based fault diagnosis in detecting these faults. Practical implications – Intelligent diagnosis can reduce the reliance on experienced personnel to make expert judgements on the state of the integrity of machines. The proposed method has the potential to be extensively applied in various industrial scenarios, although this application concerned rolling element bearings only. The principles of the application are directly translatable to other parts of complex machinery. Originality/value – This work presents a novel intelligent diagnosis strategy using pursuit features and feed forward neural networks. The value of the work is to ease the burden of making decisions on the integrity of plant through a manual program in condition monitoring and diagnostics particularly of complex pieces of plant.

Journal

Journal of Quality in Maintenance EngineeringEmerald Publishing

Published: Jun 5, 2007

Keywords: Pattern recognition; Condition monitoring; Neural nets

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month