Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Automated storage and active cleaning for multi-material digital-light-processing printer

Automated storage and active cleaning for multi-material digital-light-processing printer The purpose of this paper is to introduce a novel technique for printing with multiple materials using the DLP method. Digital-light-processing (DLP) printing uses a digital projector to selectively cure a full layer of resin using a mask image. One of the challenges with DLP printing is the difficulty of incorporating multiple materials within the same part. As the part is cured within a liquid basin, resin switching introduces issues of cross-contamination and significantly increased print time.Design/methodology/approachThe material handling challenges are investigated and addressed by taking inspiration from automated storage and retrieval systems and using an active cleaning solution. The material tower is a compact design to facilitate the storage and retrieval of different materials during the printing process. A spray mechanism is used for actively cleaning excess resin from the part between material changes.FindingsChallenges encountered within the multi-material DLP technology are addressed and the experimental prototype validates the proposed solution. The system has a cleaning effectiveness of over 90 per cent in 15 s with the build area of 72 inches, in contrast to the previous work of 50 per cent cleaning effectiveness in 2 min with only 6 inches build area. The method can also hold more materials than the previous work.Originality/valueThe techniques from automated storage and retrieval system is applied to develop a storage system so that the time complexity of swapping is reduced from linear to constant. The whole system is sustainable and scalable by using a spraying mechanism. The design of the printer is modular and highly customizable, and the material waste for build materials and cleaning solution is minimized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rapid Prototyping Journal Emerald Publishing

Automated storage and active cleaning for multi-material digital-light-processing printer

Loading next page...
 
/lp/emerald-publishing/automated-storage-and-active-cleaning-for-multi-material-digital-light-AZuyBotLw7

References (34)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1355-2546
DOI
10.1108/rpj-08-2018-0211
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to introduce a novel technique for printing with multiple materials using the DLP method. Digital-light-processing (DLP) printing uses a digital projector to selectively cure a full layer of resin using a mask image. One of the challenges with DLP printing is the difficulty of incorporating multiple materials within the same part. As the part is cured within a liquid basin, resin switching introduces issues of cross-contamination and significantly increased print time.Design/methodology/approachThe material handling challenges are investigated and addressed by taking inspiration from automated storage and retrieval systems and using an active cleaning solution. The material tower is a compact design to facilitate the storage and retrieval of different materials during the printing process. A spray mechanism is used for actively cleaning excess resin from the part between material changes.FindingsChallenges encountered within the multi-material DLP technology are addressed and the experimental prototype validates the proposed solution. The system has a cleaning effectiveness of over 90 per cent in 15 s with the build area of 72 inches, in contrast to the previous work of 50 per cent cleaning effectiveness in 2 min with only 6 inches build area. The method can also hold more materials than the previous work.Originality/valueThe techniques from automated storage and retrieval system is applied to develop a storage system so that the time complexity of swapping is reduced from linear to constant. The whole system is sustainable and scalable by using a spraying mechanism. The design of the printer is modular and highly customizable, and the material waste for build materials and cleaning solution is minimized.

Journal

Rapid Prototyping JournalEmerald Publishing

Published: Aug 21, 2019

Keywords: Process design; Rapid manufacturing; Layered manufacturing; Manufacturing technology; Manufacturing systems; UV

There are no references for this article.