Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Automated activity and progress analysis based on non-monotonic reasoning of construction operations

Automated activity and progress analysis based on non-monotonic reasoning of construction operations Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the locations of workers and equipment. Many location-sensing technologies tend to perform poorly for indoor work environments and generate large data sets that are somewhat difficult to process in a meaningful way. Unfortunately, little is still known regarding the practical benefits of converting raw worker tracking data into meaningful information about construction project progress, effectively impeding widespread adoption in construction.Design/methodology/approachThe presented framework is designed to automate as many steps as possible, aiming to avoid manual procedures that significantly increase the time between progress estimation updates. The authors apply simple location tracking sensor data that does not require personal handling, to ensure continuous data acquisition. They use a generic and non-site-specific knowledge base (KB) created through domain expert interviews. The sensor data and KB are analyzed in an abductive reasoning framework implemented in Answer Set Programming (extended to support spatial and temporal reasoning), a logic programming paradigm developed within the artificial intelligence domain.FindingsThis work demonstrates how abductive reasoning can be applied to automatically generate rich and qualitative information about activities that have been carried out on a construction site. These activities are subsequently used for reasoning about the progress of the construction project. Our framework delivers an upper bound on project progress (“optimistic estimates”) within a practical amount of time, in the order of seconds. The target user group is construction management by providing project planning decision support.Research limitations/implicationsThe KB developed for this early-stage research does not encapsulate an exhaustive body of domain expert knowledge. Instead, it consists of excerpts of activities in the analyzed construction site. The KB is developed to be non-site-specific, but it is not validated as the performed experiments were carried out on one single construction site.Practical implicationsThe presented work enables automated processing of simple location tracking sensor data, which provides construction management with detailed insight into construction site progress without performing labor-intensive procedures common nowadays.Originality/valueWhile automated progress estimation and activity recognition in construction have been studied for some time, the authors approach it differently. Instead of expensive equipment, manually acquired, information-rich sensor data, the authors apply simple data, domain knowledge and a logical reasoning system for which the results are promising. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Smart and Sustainable Built Environment Market Emerald Publishing

Automated activity and progress analysis based on non-monotonic reasoning of construction operations

Loading next page...
 
/lp/emerald-publishing/automated-activity-and-progress-analysis-based-on-non-monotonic-vhN4OVuNfq
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2046-6099
DOI
10.1108/sasbe-03-2021-0044
Publisher site
See Article on Publisher Site

Abstract

Real-time location sensing (RTLS) systems offer a significant potential to advance the management of construction processes by potentially providing real-time access to the locations of workers and equipment. Many location-sensing technologies tend to perform poorly for indoor work environments and generate large data sets that are somewhat difficult to process in a meaningful way. Unfortunately, little is still known regarding the practical benefits of converting raw worker tracking data into meaningful information about construction project progress, effectively impeding widespread adoption in construction.Design/methodology/approachThe presented framework is designed to automate as many steps as possible, aiming to avoid manual procedures that significantly increase the time between progress estimation updates. The authors apply simple location tracking sensor data that does not require personal handling, to ensure continuous data acquisition. They use a generic and non-site-specific knowledge base (KB) created through domain expert interviews. The sensor data and KB are analyzed in an abductive reasoning framework implemented in Answer Set Programming (extended to support spatial and temporal reasoning), a logic programming paradigm developed within the artificial intelligence domain.FindingsThis work demonstrates how abductive reasoning can be applied to automatically generate rich and qualitative information about activities that have been carried out on a construction site. These activities are subsequently used for reasoning about the progress of the construction project. Our framework delivers an upper bound on project progress (“optimistic estimates”) within a practical amount of time, in the order of seconds. The target user group is construction management by providing project planning decision support.Research limitations/implicationsThe KB developed for this early-stage research does not encapsulate an exhaustive body of domain expert knowledge. Instead, it consists of excerpts of activities in the analyzed construction site. The KB is developed to be non-site-specific, but it is not validated as the performed experiments were carried out on one single construction site.Practical implicationsThe presented work enables automated processing of simple location tracking sensor data, which provides construction management with detailed insight into construction site progress without performing labor-intensive procedures common nowadays.Originality/valueWhile automated progress estimation and activity recognition in construction have been studied for some time, the authors approach it differently. Instead of expensive equipment, manually acquired, information-rich sensor data, the authors apply simple data, domain knowledge and a logical reasoning system for which the results are promising.

Journal

Smart and Sustainable Built Environment MarketEmerald Publishing

Published: Nov 10, 2021

Keywords: Abductive reasoning; Constraint programming; Knowledge representation and reasoning; Building information modeling; Real-time location sensing; Ultra-wideband

References