Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study aims to uncover how heuristic information cues (HIC) and systematic information cues (SIC) of online reviews influence review helpfulness and examine a moderating role of social influence in the process of assessing review helpfulness. In particular, this study conceptualizes a theoretical framework based on dual-process and social influence theory (SIT) and empirically tests the proposed hypotheses by analyzing a broad set of actual customer review data.Design/methodology/approachFor 4,177,377 online reviews posted on Yelp.com from 2004 to 2018, this study used data mining and text analysis to extract independent variables. Zero-inflated negative binomial regression analysis was conducted to test the hypothesized model.FindingsThe present study demonstrates that both HIC and SIC have a significant relationship with review helpfulness. Normative social influence cue (NSIC) strengthened the relationship between HIC and review helpfulness. However, the moderating effect of NSIC was not valid in the relationship between SIC and review helpfulness.Originality/valueThis study contributes to the extant research on review helpfulness by providing a conceptual framework underpinned by dual-process theory and SIT. The study not only identifies determinants of review helpfulness but also reveals how social influences can impact individuals’ judgment on review helpfulness. By offering a state-of-the-art analysis with a vast amount of online reviews, this study contributes to the methodological improvement of further empirical research.
Journal of Hospitality and Tourism Technology – Emerald Publishing
Published: Jul 15, 2021
Keywords: Big data; Review helpfulness; Dual-process theory; Social influence theory; Heuristic information cue; Systematic information cue; 评论有用性; 双重历程理论; 社会影响理论; 大数据; 启发性信息源; 系统性信息源
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.