Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – This paper aims to investigate Lithuanian house price changes. Its twin motivations are the importance of information on future house price movements to sector stakeholders and the limited number of related Lithuanian property market studies. Design/methodology/approach – The study employs ARIMA modelling approach. It assesses whether past is a good predictor of the future. It then examines issues relating to an application of this univariate time-series modelling technique in a forecasting context. Findings – As the results of the study suggest, ARIMA is a useful technique to assess broad market price changes. Government and central bank can use ARIMA modelling approach to forecast national house price inflation. Developers can employ this methodology to drive successful house-building programme. Investor can incorporate forecasts from ARIMA models into investment strategy for timing purposes. Research limitations/implications – Certainly, there are number of limitations attached to this particular modelling approach. Firm predictions about house price movements are also a challenge, as well as more research needs to be done in establishing a dynamic interrelationship between macro variables and the Lithuanian housing market. Originality/value – Although the research focused on Lithuania, the findings extend to global housing market. ARIMA house price modelling provides insights for a spectrum of stakeholders. The use of this modelling approach can be employed to improve monetary policy oversight, facilitate planning for infrastructure or social housing as a countercyclical policy and mitigate risk for investors. What is more, a greater appreciation of Lithuania housing market can act as a bellwether for real estate markets in other trade-exposed small country economies.
International Journal of Housing Markets and Analysis – Emerald Publishing
Published: Mar 2, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.