Arabic supervised learning method using N‐gram

Arabic supervised learning method using N‐gram Purpose – Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts using N‐gram as an indexing method ( n = 3). Design/methodology/approach – The Lebanese official journal documents are categorized into several classes. Supposing that we know the class(es) of some documents (called learning texts), this can help to determine the candidate words of each class by segmenting the documents. Findings – Results showed that N‐gram text classification using the cosine coefficient measure outperforms classification using Dice's measure and TF*ICF weight. Then it is the best between the three measures but it still insufficient. N‐gram method is good, but still insufficient for the classification of Arabic documents, and then it is necessary to look at the future of a new approach like distributional or symbolic approach in order to increase the effectiveness. Originality/value – The results could be used to improve Arabic document classification (using software also). This work has evaluated a number of similarity measures for the classification of Arabic documents, using the Lebanese parliament documents and especially the Lebanese official journal documents Arabic corpus as the test bed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Interactive Technology and Smart Education Emerald Publishing

Arabic supervised learning method using N‐gram

Loading next page...
 
/lp/emerald-publishing/arabic-supervised-learning-method-using-n-gram-FbkqUdIyIr
Publisher
Emerald Publishing
Copyright
Copyright © 2008 Emerald Group Publishing Limited. All rights reserved.
ISSN
1741-5659
D.O.I.
10.1108/17415650810908249
Publisher site
See Article on Publisher Site

Abstract

Purpose – Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts using N‐gram as an indexing method ( n = 3). Design/methodology/approach – The Lebanese official journal documents are categorized into several classes. Supposing that we know the class(es) of some documents (called learning texts), this can help to determine the candidate words of each class by segmenting the documents. Findings – Results showed that N‐gram text classification using the cosine coefficient measure outperforms classification using Dice's measure and TF*ICF weight. Then it is the best between the three measures but it still insufficient. N‐gram method is good, but still insufficient for the classification of Arabic documents, and then it is necessary to look at the future of a new approach like distributional or symbolic approach in order to increase the effectiveness. Originality/value – The results could be used to improve Arabic document classification (using software also). This work has evaluated a number of similarity measures for the classification of Arabic documents, using the Lebanese parliament documents and especially the Lebanese official journal documents Arabic corpus as the test bed.

Journal

Interactive Technology and Smart EducationEmerald Publishing

Published: Aug 22, 2008

Keywords: Classification; Learning methods; Languages; Text retrieval; Lebanon

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off