Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Application of Self Organizing Map (SOM) to model a machining process

Application of Self Organizing Map (SOM) to model a machining process Purpose – This paper aims to present a practical application of Self Organizing Map (SOM) and decision tree algorithms to model a multi‐response machining process and to provide a set of control rules for this process. Design/methodology/approach – SOM is a powerful artificial neural network approach used for analyzing and visualizing high‐dimensional data. Wire electrical discharge machining (WEDM) process is a complex and expensive machining process, in which there are a lot of factors having effects on the outputs of the process. In this work, after collecting a dataset based on a series of designed experiments, the paper applied SOM to this dataset in order to analyse the underlying relations between input and output variables as well as interactions between input variables. The results are compared with the results obtained from decision tree algorithm. Findings – Based on the analysis of the results obtained, the paper extracted interrelationships between variables as well as a set of control rules for prediction of the process outputs. The results of the new experiments based on these rules, clearly demonstrate that the paper's predictions are valid, interesting and useful. Originality/value – To the best of the authors' knowledge, this is the first time SOM and decision tree has been applied to the WEDM process successfully. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Manufacturing Technology Management Emerald Publishing

Application of Self Organizing Map (SOM) to model a machining process

Loading next page...
 
/lp/emerald-publishing/application-of-self-organizing-map-som-to-model-a-machining-process-x62g2xV7nv
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
1741-038X
DOI
10.1108/17410381111149666
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper aims to present a practical application of Self Organizing Map (SOM) and decision tree algorithms to model a multi‐response machining process and to provide a set of control rules for this process. Design/methodology/approach – SOM is a powerful artificial neural network approach used for analyzing and visualizing high‐dimensional data. Wire electrical discharge machining (WEDM) process is a complex and expensive machining process, in which there are a lot of factors having effects on the outputs of the process. In this work, after collecting a dataset based on a series of designed experiments, the paper applied SOM to this dataset in order to analyse the underlying relations between input and output variables as well as interactions between input variables. The results are compared with the results obtained from decision tree algorithm. Findings – Based on the analysis of the results obtained, the paper extracted interrelationships between variables as well as a set of control rules for prediction of the process outputs. The results of the new experiments based on these rules, clearly demonstrate that the paper's predictions are valid, interesting and useful. Originality/value – To the best of the authors' knowledge, this is the first time SOM and decision tree has been applied to the WEDM process successfully.

Journal

Journal of Manufacturing Technology ManagementEmerald Publishing

Published: Jul 26, 2011

Keywords: Self Organizing Map; Decision trees; Artificial neural nets

References