Application of numerical procedure for thermal diagnostics of the delamination of strengthening material at concrete construction

Application of numerical procedure for thermal diagnostics of the delamination of strengthening... PurposeLarge structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this technology to work requires the quality of the bonding of FRP and the concrete to be perfect. Possible defects may arise in the phase of construction but also as a result of long-term fatigue loads. These defects having different forms of voids and discontinuities in the bonding layer are difficult to detect by optical inspection. This paper aims to describe the development of a rapid and nondestructive method for quantitative assessment of the debonding between materials.Design/methodology/approachThe applied technique belongs to the wide class of active infrared (IR) thermography, the principle of which is to heat (or cool) the investigated object, and determine the properties of interest from the recorded, by an IR camera, temperature field. The methodology implemented in this work is to uniformly heat for a few seconds, using a set of halogen lamps, the FRP surface attached to the concrete. The parameter of interest is the thermal resistance of the layer separating the polymer tape and the concrete. The presence of voids and debonding will result in large values of this resistance. Its value is retrieved by solving an inverse transient heat conduction problem. This is accomplished by minimizing, in the sense of least squares, the difference between the recorded and simulated temperatures. The latter is defined as a solution of a 1D transient heat conduction problem with the already mentioned thermal resistance treated as the only decision variable.FindingsA general method has been developed, which detects debonding of the FRP tapes from the concrete. The method is rapid and nondestructive. Owing to a special selection of the compared dimensionless measured and simulated temperatures, the method is not sensitive to the surface quality (roughness and emissivity). Measurements and calculation may be executed within seconds. The efficiency of the technique has been shown at a sample, where the defects have been artificially introduced in a controlled manner.Originality/valueA quantitative assessment procedure which can be used to determine the extent of the debonding has been developed. The procedure uses inverse technique whose result is the unknown thermal resistance between the member and the FRP strip. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Application of numerical procedure for thermal diagnostics of the delamination of strengthening material at concrete construction

Loading next page...
 
/lp/emerald-publishing/application-of-numerical-procedure-for-thermal-diagnostics-of-the-DknVAdaySa
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-04-2019-0278
Publisher site
See Article on Publisher Site

Abstract

PurposeLarge structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this technology to work requires the quality of the bonding of FRP and the concrete to be perfect. Possible defects may arise in the phase of construction but also as a result of long-term fatigue loads. These defects having different forms of voids and discontinuities in the bonding layer are difficult to detect by optical inspection. This paper aims to describe the development of a rapid and nondestructive method for quantitative assessment of the debonding between materials.Design/methodology/approachThe applied technique belongs to the wide class of active infrared (IR) thermography, the principle of which is to heat (or cool) the investigated object, and determine the properties of interest from the recorded, by an IR camera, temperature field. The methodology implemented in this work is to uniformly heat for a few seconds, using a set of halogen lamps, the FRP surface attached to the concrete. The parameter of interest is the thermal resistance of the layer separating the polymer tape and the concrete. The presence of voids and debonding will result in large values of this resistance. Its value is retrieved by solving an inverse transient heat conduction problem. This is accomplished by minimizing, in the sense of least squares, the difference between the recorded and simulated temperatures. The latter is defined as a solution of a 1D transient heat conduction problem with the already mentioned thermal resistance treated as the only decision variable.FindingsA general method has been developed, which detects debonding of the FRP tapes from the concrete. The method is rapid and nondestructive. Owing to a special selection of the compared dimensionless measured and simulated temperatures, the method is not sensitive to the surface quality (roughness and emissivity). Measurements and calculation may be executed within seconds. The efficiency of the technique has been shown at a sample, where the defects have been artificially introduced in a controlled manner.Originality/valueA quantitative assessment procedure which can be used to determine the extent of the debonding has been developed. The procedure uses inverse technique whose result is the unknown thermal resistance between the member and the FRP strip.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Aug 30, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off