Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Application of microwave heating in ceramic-based microfluidic module

Application of microwave heating in ceramic-based microfluidic module PurposeThis paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components. The design, technology and performance of such an LTCC-based module is investigated. The rapid heating of liquid samples on a microliter scale is shown to be possible with the use of microwaves.Design/methodology/approachThe developed microwave-microfluidic module was fabricated using well-known LTCC technology. The finite element method was used to design the geometry of the microwave circuit. Various numerical simulations for different liquids were performed. Finally, the performance of the real LTCC-based microwave-microfluidic module was examined experimentally.FindingsLTCC materials and technology can be used in the fabrication of microfluidic modules which use microwaves in the heating of the liquid sample. LTCC technology permits the fabrication of matching circuits with appropriate geometry, whereas microwave power can be used to heat up the liquid samples on a microliter scale.Research limitations/implicationsThe main limitation of the presented work is found to be in conjunction with LTCC technology. The dimensions and shape of the deposited conductors (e.g. microstrip line, matching circuit) depend on the screen-printing process. A line with resolution lower than 75 µm with well-defined edges is difficult to obtain. This can have an effect on the high-frequency properties of the LTCC modules.Practical implicationsThe presented LTCC-based microfluidic module with integrated microwave circuits provides an opportunity for the further development of various micro-total analysis systems or lab-on-chips in which the rapid heating of liquid samples in low volumes is needed (e.g. miniature real-time polymerase chain reaction thermocycler).Originality/valueExamples of the application of LTCC technology in the fabrication of microwave circuits and microfluidic systems can be found in the available literature. However, the LTCC-based module which combines microwave and microfluidic components has yet to have been reported. The preliminary work on the design, fabrication and properties of the LTCC microfluidic module with integrated microwave components is presented in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microelectronics International Emerald Publishing

Application of microwave heating in ceramic-based microfluidic module

Loading next page...
 
/lp/emerald-publishing/application-of-microwave-heating-in-ceramic-based-microfluidic-module-VsWnukro9X

References (17)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1356-5362
DOI
10.1108/MI-11-2017-0062
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components. The design, technology and performance of such an LTCC-based module is investigated. The rapid heating of liquid samples on a microliter scale is shown to be possible with the use of microwaves.Design/methodology/approachThe developed microwave-microfluidic module was fabricated using well-known LTCC technology. The finite element method was used to design the geometry of the microwave circuit. Various numerical simulations for different liquids were performed. Finally, the performance of the real LTCC-based microwave-microfluidic module was examined experimentally.FindingsLTCC materials and technology can be used in the fabrication of microfluidic modules which use microwaves in the heating of the liquid sample. LTCC technology permits the fabrication of matching circuits with appropriate geometry, whereas microwave power can be used to heat up the liquid samples on a microliter scale.Research limitations/implicationsThe main limitation of the presented work is found to be in conjunction with LTCC technology. The dimensions and shape of the deposited conductors (e.g. microstrip line, matching circuit) depend on the screen-printing process. A line with resolution lower than 75 µm with well-defined edges is difficult to obtain. This can have an effect on the high-frequency properties of the LTCC modules.Practical implicationsThe presented LTCC-based microfluidic module with integrated microwave circuits provides an opportunity for the further development of various micro-total analysis systems or lab-on-chips in which the rapid heating of liquid samples in low volumes is needed (e.g. miniature real-time polymerase chain reaction thermocycler).Originality/valueExamples of the application of LTCC technology in the fabrication of microwave circuits and microfluidic systems can be found in the available literature. However, the LTCC-based module which combines microwave and microfluidic components has yet to have been reported. The preliminary work on the design, fabrication and properties of the LTCC microfluidic module with integrated microwave components is presented in this paper.

Journal

Microelectronics InternationalEmerald Publishing

Published: Jul 2, 2018

There are no references for this article.