Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Application of metaheuristic algorithms in interval type-2 fractional order fuzzy TID controller for nonlinear level control process under actuator and system component faults*

Application of metaheuristic algorithms in interval type-2 fractional order fuzzy TID controller... The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the Proportional integral and derivative (PID) feedback control loop. The conventional PID controller performance degrades significantly in the existence of modeling uncertainty, faults and process disturbances. To overcome these limitations, the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller (IT2TID) which is modified structure of PID controller.Design/methodology/approachIn this paper, an optimization IT2TID controller design for the conical, noninteracting level control system is presented. Regarding to modern optimization context, the flower pollination algorithm (FPA), among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID's and IT2FPID's parameters. The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem. System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.FindingsAs the results, it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults. Additionally, statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.Originality/valueApplication of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults. Also, proposed method will compare with other method and statistical analysis will be presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Computing and Cybernetics Emerald Publishing

Application of metaheuristic algorithms in interval type-2 fractional order fuzzy TID controller for nonlinear level control process under actuator and system component faults*

Loading next page...
 
/lp/emerald-publishing/application-of-metaheuristic-algorithms-in-interval-type-2-fractional-sx7KuKgiNx
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
1756-378X
DOI
10.1108/ijicc-08-2020-0104
Publisher site
See Article on Publisher Site

Abstract

The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the Proportional integral and derivative (PID) feedback control loop. The conventional PID controller performance degrades significantly in the existence of modeling uncertainty, faults and process disturbances. To overcome these limitations, the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller (IT2TID) which is modified structure of PID controller.Design/methodology/approachIn this paper, an optimization IT2TID controller design for the conical, noninteracting level control system is presented. Regarding to modern optimization context, the flower pollination algorithm (FPA), among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID's and IT2FPID's parameters. The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem. System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.FindingsAs the results, it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults. Additionally, statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.Originality/valueApplication of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults. Also, proposed method will compare with other method and statistical analysis will be presented.

Journal

International Journal of Intelligent Computing and CyberneticsEmerald Publishing

Published: Mar 4, 2021

Keywords: Actuator fault; Flower pollination algorithm; Interval type-2 fuzzy logic; System component fault; TID control

References