Application of laser shock peening for spinal implant rods

Application of laser shock peening for spinal implant rods Purpose – The current industry standard rigid spinal implants suffer fatigue failures due to bending and torsion loads. The purpose of this program was to design novel prototype flexible titanium alloy spinal implant rod with machined features, and then apply the laser shock peening (LSP) process to restore the fatigue strength debit due to these features. Design/methodology/approach – A flexible prototype rod was designed with flat section at the center of the rod. The flat section was laser shock peened. Static compression tests were conducted as per American Society of Testing Materials standards for three‐ and four‐point bending tests and “vertebrectomy” constructs. Finite element models were developed to aid in the design of LSP and also to guide the experiments. Findings – The test results indicated a ∼3X improvement in flexibility and a reduction in fatigue load ratio, defined as applied load divided by the yield load; from 72 to 68 percent. This rod was LSP's on the flat sections, and tested again. The results indicated an increase in the fatigue load ratio from 68 to 75 percent without any further change in flexibility. Originality/value – It has been demonstrated successfully that the current industry rigid spinal implant rod can be modified for flexibility and laser shock peened to increase fatigue strength. This enhancement will enable the use of the implant for longer periods and higher loads; and for surgical processes with and without fusion. This technology can be readily applied to all metals that are certified for human implant applications; thus can be implemented with minimal clinical trials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Structural Integrity Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/application-of-laser-shock-peening-for-spinal-implant-rods-vRH4YfYyBf
Publisher
Emerald Publishing
Copyright
Copyright © 2011 Emerald Group Publishing Limited. All rights reserved.
ISSN
1757-9864
DOI
10.1108/17579861111108653
Publisher site
See Article on Publisher Site

Abstract

Purpose – The current industry standard rigid spinal implants suffer fatigue failures due to bending and torsion loads. The purpose of this program was to design novel prototype flexible titanium alloy spinal implant rod with machined features, and then apply the laser shock peening (LSP) process to restore the fatigue strength debit due to these features. Design/methodology/approach – A flexible prototype rod was designed with flat section at the center of the rod. The flat section was laser shock peened. Static compression tests were conducted as per American Society of Testing Materials standards for three‐ and four‐point bending tests and “vertebrectomy” constructs. Finite element models were developed to aid in the design of LSP and also to guide the experiments. Findings – The test results indicated a ∼3X improvement in flexibility and a reduction in fatigue load ratio, defined as applied load divided by the yield load; from 72 to 68 percent. This rod was LSP's on the flat sections, and tested again. The results indicated an increase in the fatigue load ratio from 68 to 75 percent without any further change in flexibility. Originality/value – It has been demonstrated successfully that the current industry rigid spinal implant rod can be modified for flexibility and laser shock peened to increase fatigue strength. This enhancement will enable the use of the implant for longer periods and higher loads; and for surgical processes with and without fusion. This technology can be readily applied to all metals that are certified for human implant applications; thus can be implemented with minimal clinical trials.

Journal

International Journal of Structural IntegrityEmerald Publishing

Published: Mar 8, 2011

Keywords: Fatigue; Spinal cord; Medical appliances; Finite element analysis

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off