Anderson acceleration for electromagnetic nonlinear problems

Anderson acceleration for electromagnetic nonlinear problems PurposeThe purpose of this paper is to implement the Anderson acceleration for different formulations of eletromagnetic nonlinear problems and analyze the method efficiency and strategies to obtain a fast convergence.Design/methodology/approachThe paper is structured as follows: the general class of fixed point nonlinear problems is shown at first, highlighting the requirements for convergence. The acceleration method is then shown with the associated pseudo-code. Finally, the algorithm is tested on different formulations (finite element, finite element/boundary element) and material properties (nonlinear iron, hysteresis models for laminates). The results in terms of convergence and iterations required are compared to the non-accelerated case.FindingsThe Anderson acceleration provides accelerations up to 75 per cent in the test cases that have been analyzed. For the hysteresis test case, a restart technique is proven to be helpful in analogy to the restarted GMRES technique.Originality/valueThe acceleration that has been suggested in this paper is rarely adopted for the electromagnetic case (it is normally adopted in the electronic simulation case). The procedure is general and works with different magneto-quasi static formulations as shown in the paper. The obtained accelerations allow to reduce the number of iterations required up to 75 per cent in the benchmark cases. The method is also a good candidate in the hysteresis case, where normally the fixed point schemes are preferred to the Newton ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/anderson-acceleration-for-electromagnetic-nonlinear-problems-T0zh1WqYSR
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/COMPEL-11-2018-0483
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to implement the Anderson acceleration for different formulations of eletromagnetic nonlinear problems and analyze the method efficiency and strategies to obtain a fast convergence.Design/methodology/approachThe paper is structured as follows: the general class of fixed point nonlinear problems is shown at first, highlighting the requirements for convergence. The acceleration method is then shown with the associated pseudo-code. Finally, the algorithm is tested on different formulations (finite element, finite element/boundary element) and material properties (nonlinear iron, hysteresis models for laminates). The results in terms of convergence and iterations required are compared to the non-accelerated case.FindingsThe Anderson acceleration provides accelerations up to 75 per cent in the test cases that have been analyzed. For the hysteresis test case, a restart technique is proven to be helpful in analogy to the restarted GMRES technique.Originality/valueThe acceleration that has been suggested in this paper is rarely adopted for the electromagnetic case (it is normally adopted in the electronic simulation case). The procedure is general and works with different magneto-quasi static formulations as shown in the paper. The obtained accelerations allow to reduce the number of iterations required up to 75 per cent in the benchmark cases. The method is also a good candidate in the hysteresis case, where normally the fixed point schemes are preferred to the Newton ones.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Sep 2, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off