Purpose – Carbon nanotubes (CNTs) with exceptional mechanical, thermal and electrical properties are considered to be ideal for reinforcing high‐performance structures. The interfacial stresses between the CNTs and surrounding matrix are important phenomena which critically govern the mechanical properties of CNTs‐reinforced nanocomposites. A number of methods have been proposed to investigate the stress transfer across the CNT/matrix interface, such as experimental measurement and molecular dynamics (MDs). Experimental tests are difficulty and expensive. MDs simulations, on the other hand, are computationally inefficient. The purpose of this paper is to present a reasonably simplified model. Incorporating the simplified model, the analytical expressions of the interface stresses including the shear stress and longitudinal normal stress are obtained. Design/methodology/approach – The analytical model consists of two concentric cylinders, namely a single‐walled carbon nanotube (SWCNT) cylinder and a matrix cylinder, as the representative volume element (RVE). The interfacial stress analysis is performed using the shear lag model for the axisymmetric RVE. Analytical solutions for the normal stresses in the SWCNT and matrix, and the interfacial shear stress across the SWCNT/matrix interface are obtained. The proposed model has a great ability to theoretical prediction of the stress transfer between the matrix and CNTs. Findings – In order to demonstrate the simulation capabilities of the proposed model, parametric studies are conducted to investigate the effects of the volume fraction of SWCNT and matrix modulus on the stress transfer. The axial stress in the matrix is decreasing with the increase of the volume fraction and decrease of the matrix modulus. As a result of more loads can be transferred to the SWCNT for a large volume fraction and small matrix modulus. These results show that using a large volume fraction and a small matrix modulus improves the efficiency of the stress transfer from the matrix to the CNTs. Originality/value – A simple but accurate model using a simplified 2D RVE for characterizing the stress transfer in CNT‐reinforced nanocomposites is presented. The predictions from the current method compare favourably with those by existing experimental, analytical and computational studies. The simple and explicit expressions of the interfacial stresses provide valuable analysis tools accessible to practical users.
Engineering Computations – Emerald Publishing
Published: Apr 1, 2014
Keywords: Nanocomposite; Shear lag model; Single‐walled carbon nanotube
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.