Analysis of liquid‐lubricated herringbone grooved journal bearings

Analysis of liquid‐lubricated herringbone grooved journal bearings Numerical studies are carried out to investigate the liquid‐lubricated herringbone‐grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution, load capacity and attitude angle, stability, etc.). Symmetrical and non‐symmetrical HGJBs are studied, respectively, and the herringbone grooves' influence on the stability of HGJBs is analyzed carefully. It was found that the maximum pressure and load capacity increase with the increase of eccentricity ratio while the attitude angle decreases with the increase of eccentricity ratio. The cavitation may occur in the fluid film of journal bearings while the eccentricity ratio increases to some critical value. The area of cavitated region increases with the increase of the eccentricity ratio. For non‐symmetrical HGJBs, the pressure and cavitation distribution is asymmetrical oo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Analysis of liquid‐lubricated herringbone grooved journal bearings

Loading next page...
 
/lp/emerald-publishing/analysis-of-liquid-lubricated-herringbone-grooved-journal-bearings-g1aoSdU3ol
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615530410517995
Publisher site
See Article on Publisher Site

Abstract

Numerical studies are carried out to investigate the liquid‐lubricated herringbone‐grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution, load capacity and attitude angle, stability, etc.). Symmetrical and non‐symmetrical HGJBs are studied, respectively, and the herringbone grooves' influence on the stability of HGJBs is analyzed carefully. It was found that the maximum pressure and load capacity increase with the increase of eccentricity ratio while the attitude angle decreases with the increase of eccentricity ratio. The cavitation may occur in the fluid film of journal bearings while the eccentricity ratio increases to some critical value. The area of cavitated region increases with the increase of the eccentricity ratio. For non‐symmetrical HGJBs, the pressure and cavitation distribution is asymmetrical oo.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Apr 1, 2004

Keywords: Cavitation; Fluid dynamics; Lubricants; Lubricating systems

References

  • Cavitation in bearings
    Dowson, D.; Taylor, C.M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off